МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"

Институт физики

УΤ	В	E	P	Ж	Д	Α	Ю
, .	_	_		/!\	_	_	

Проректор по образовательной деятельности КФУ проф. Таюрский Д.А.

Программа дисциплины

Вычислительные программные средства геофизики Б1.В.ОД.7

Направление подготовки: 03.04.03 - Радиофизика

Профиль подготовки: Радиофизические методы по областям применения

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Автор(ы): <u>Куштанова Г.Г.</u>

Рецензент(ы): Овчинников М.Н.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Овчинников М. Н. Протокол заседания кафедры No от ""	20г.
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от ""	20г.
Казань	

2018

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю
- 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 6.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения
- 6.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
- 7.1. Основная литература
- 7.2. Дополнительная литература
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

Программу дисциплины разработал(а)(и) доцент, д.н. (доцент) Куштанова Г.Г. (Кафедра радиоэлектроники, Отделение радиофизики и информационных систем), Galya. Kushtanova@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Выпускник, освоивший дисциплину, должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции			
ПК-5	Способность описывать новые методики инженерно-технологической деятельности			
ОПК-3	Способность к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимых для решения научно-исследовательских задач			
ОПК-4	Способность к свободному владению профессионально-профилированными знаниями в области информационных технологий, использованию современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки			
ПК-2	Способность самостоятельно ставить научные задачи в области физики и радиофизики (в соответствии с профилем подготовки) и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта			
ПК-1	Способность использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики			

Выпускник, освоивший дисциплину:

Должен знать:

фундаментальные разделы физики и радиофизики, необходимые для решения научно-исследовательских задач:

информационные технологии, использование современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки

Должен уметь:

самостоятельно ставить научные задачи в области физики и радиофизики (в соответствии с профилем подготовки) и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта

Должен владеть:

Способностью использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики

Способностью описывать новые методики инженерно-технологической деятельности

Должен демонстрировать способность и готовность:

способностью к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимых для решения научно-исследовательских задач;

способностью к свободному владению профессионально-профилированными знаниями в области информационных технологий, использованию современных компьютерных сетей, программных продуктов и ресурсов информационно-телекоммуникационной сети 'Интернет' (далее - сеть 'Интернет') для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки;

способностью использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики ;

способностью самостоятельно ставить научные задачи в области физики и радиофизики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта; способностью описывать новые методики инженерно-технологической деятельности

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.7 Дисциплины (модули)" основной профессиональной образовательной программы 03.04.03 "Радиофизика (Радиофизические методы по областям применения)" и относится к обязательным дисциплинам. Осваивается на 1 курсе, в 1 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы), 72 часа(ов).

Контактная работа - 26 часа(ов), в том числе лекции - 13 часа(ов), практические занятия - 13 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 46 часа (ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 1 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю

N	Раздел дисциплины/	Семестр	Виды и часы контактной работы, их трудоемкость (в часах)			Самостоятельная работа	
	модуля		Лекции	Практические занятия	Лабораторные работы	-	
	Тема 1. Что такое гидродинамическое моделирование	1	2	0	0	2	
2.	Тема 2. Структура и организация файлов Eclipse	1	1	1	0	2	
3.	Тема 3. Секция Grid	1	1	1	0	6	
4.	Тема 4. Секция PVT	1	1	2	0	8	
5.	Тема 5. Секция Scal	1	1	2	0	4	
6.	Тема 6. Секция Initialization	1	1	1	0	2	
7.	Тема 7. Секция SCHEDULE	1	2	2	0	8	
8.	Тема 8. Секция Summary	1	1	1	0	2	
9.		1	1	1	0	4	
10.	Тема 10. Моделирование водоносных пластов	1	1	1	0	4	
11.	Тема 11. Моделирование КВД	1	1	1	0	4	
	Итого		13	13	0	46	

4.2 Содержание дисциплины

Тема 1. Что такое гидродинамическое моделирование

нНсколько модель соответствует месторождению, задачи решаемые с помощью гидродинамического моделирования. Возможности гидродинамического симулятора Eclipse

Тема 2. Структура и организация файлов Eclipse

Структура входных выходных файлов.

Тема 3. Секция Grid

Понятие сетки, типы сеток. Минимальный набор данных для каждой ячейки модели.

Тема 4. Секция PVT

PVT свойства флюидов. Модель черной нефти.

Тема 5. Секция Scal

Фазовые проницаемости

Тема 6. Секция Initialization

Начальные данные

Тема 7. Секция SCHEDULE

Добавление скважин Перфорация интервалов.. Подбор истории. Прогноз.

Тема 8. Секция Summary

Назначение секции. Ключевые слова.

Тема 9. Секция Result

Построение 2-D и псевдо 3-D графиков.

Тема 10. Моделирование водоносных пластов

Моделирование аквифера

Тема 11. Моделирование КВД

Моделирование кривой восстановления давления

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года N301).

Письмо Министерства образования Российской Федерации N14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Положение от 24 декабря 2015 г. ♦ 0.1.1.67-06/265/15 "О порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.67-06/241/15 от 14 декабря 2015 г. "О формировании фонда оценочных средств для проведения текущей, промежуточной и итоговой аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.56-06/54/11 от 26 октября 2011 г. "Об электронных образовательных ресурсах федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/66/16 от 30 марта 2016 г. "Разработки, регистрации, подготовки к использованию в учебном процессе и удаления электронных образовательных ресурсов в системе электронного обучения федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/11/16 от 25 января 2016 г. "О балльно-рейтинговой системе оценки знаний обучающихся в федеральном государственном автономном образовательном учреждении высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/91/13 от 21 июня 2013 г. "О порядке разработки и выпуска учебных изданий в федеральном государственном автономном образовательном учреждении высшего профессионального образования "Казанский (Приволжский) федеральный университет""

6. Фонд оценочных средств по дисциплине (модулю)

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения

Этап	Форма контроля Оцениваемые компетенции		Темы (разделы) дисциплины		
Семе	стр 1				
	Текущий контроль				
1	Устный опрос	ОПК-3 , ПК-2 , ПК-1	1. Что такое гидродинамическое моделирование 5. Секция Scal		
_	Компьютерная программа	ОПК-4 , ПК-2	3. Секция Grid 4. Секция PVT 6. Секция Initialization		
3	Компьютерная программа	ПК-5 , ПК-2	7. Секция SCHEDULE 8. Секция Summary 9. Секция Result		
4	Компьютерная программа	ПК-5 , ПК-2	10. Моделирование водоносных пластов 11. Моделирование КВД		
	Зачет	ОПК-3, ОПК-4, ПК-1, ПК-2, ПК-5			

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Форма	Критерии оценивания				
контроля	Отлично	Хорошо	Удовл.	Неуд.	
Семестр 1	-	•	<u> </u>		•
Текущий конт	гроль				

Форма контроля	Критерии оценивания					
	Отлично	Хорошо	Удовл.	Неуд.		
Устный опрос	В ответе качественно раскрыто содержание темы. Ответ хорошо структурирован. Прекрасно освоен понятийный аппарат. Продемонстрирован высокий уровень понимания материала. Превосходное умение формулировать свои мысли, обсуждать дискуссионные положения.	Основные вопросы темы раскрыты. Структура ответа в целом адекватна теме. Хорошо освоен понятийный аппарат. Продемонстрирован хороший уровень понимания материала. Хорошее умение формулировать свои мысли, обсуждать дискуссионные положения.	Тема частично раскрыта. Ответ слабо раскрыта. Ответ слабо раскрыта. Понятийный аппара освоен положений из рормулировать свои мысли, обсуждать цискуссионные положения.		1	
Компьютерная программа	Высокий уровень умений и навыков программирования, в том числе моделирования, алгоритмизации, использования языка	Хороший уровень умений и навыков программирования, в том числе моделирования, алгоритмизации, использования языка	Удовлетворительный уровень умений и навыков программирования, в том числе моделирования, алгоритмизации,	Недостаточный уровень умений и навыков программирования, в том числе моделирования, алгоритмизации,	2 3 4	
	программирования. Поставленная задача полностью решена.	программирования. Поставленная задача в основном решена.	использования языка программирования. Поставленная задача решена частично.	использования языка программирования. Поставленная задача не решена.		
0	Зачтено		Не зачтено			
Зачет	Обучающийся обнаруж учебно-программного м необходимом для далы предстоящей работы по справился с выполнени предусмотренных прог	атериала в объеме, нейшей учебы и о специальности, вем заданий,	Обучающийся обнаружил значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение или приступить по окончании университета к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине.			

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Семестр 1

Текущий контроль

1. Устный опрос

Темы 1, 5

Что такое моделирование.

Двухфазная фильтрация. Относительные фазовые проницаемости.

2. Компьютерная программа

Темы 3, 4, 6

Понятие сеток в декартовой и радиальной системе координат, их особенности.

Задание свойств пласта. Задание начального состояния залежи.

3. Компьютерная программа

Темы 7, 8, 9

Имитация бурения скважины, перфорации. Задание режимов работы. Визуализация результатов моделирования в виде графиков, полей, 3D

4. Компьютерная программа

Темы 10. 11

Имитация аквифера. Моделирование остановки скважины и записи КВД.

Зачет

Вопросы к зачету:

- 1. Назначение секции Grid. Методы построения сеток.
- 2. Назначение секции PVT. Ключевые слова.
- 3. Задание начальных данных.

- 4. Задание фазовых проницаемостей.
- 5. Добавление скважин и перфорация.
- 6. Особенности задания перфорации в радиальных координатах.
- 7. Построение графиков.
- 8. Симуляция гидроразрыва пласта.
- 9. Моделирование КВД.
- 10. Управление выводом.
- 11. Задание Аквифера.

6.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В КФУ действует балльно-рейтинговая система оценки знаний обучающихся. Суммарно по дисциплине (модулю) можно получить максимум 100 баллов за семестр, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов.

Для зачёта:

56 баллов и более - "зачтено".

55 баллов и менее - "не зачтено".

Для экзамена:

86 баллов и более - "отлично".

71-85 баллов - "хорошо".

56-70 баллов - "удовлетворительно".

55 баллов и менее - "неудовлетворительно".

Форма контроля	Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Этап	Количество баллов
Семестр 1			•
Текущий конт	роль		
Устный опрос	Устный опрос проводится на практических занятиях. Обучающиеся выступают с докладами, сообщениями, дополнениями, участвуют в дискуссии, отвечают на вопросы преподавателя. Оценивается уровень домашней подготовки по теме, способность системно и логично излагать материал, анализировать, формулировать собственную позицию, отвечать на дополнительные вопросы.	1	10
Компьютерная программа	Обучающиеся самостоятельно составляют программу на определённом языке программирования в соответствии с заданием. Программа сдаётся преподавателю в электронном виде. Оценивается реализация алгоритмов на языке программирования, достижение заданного результата.	2 3 4	10 10 20
		Всего:	50
Зачет	Зачёт нацелен на комплексную проверку освоения дисциплины. Обучающийся получает вопрос (вопросы) либо задание (задания) и время на подготовку. Зачёт проводится в устной, письменной или компьютерной форме. Оценивается владение материалом, его системное освоение, способность применять нужные знания, навыки и умения при анализе проблемных ситуаций и решении практических заданий.		50

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература:

Куштанова Г.Г. Подземная гидромеханика: конспект лекций/Г.Г. Куштанова . ?Казань, Издательство Казанского университета, 2015. -116c. -http://libweb.kpfu.ru/ebooks/06-IPh/06_44_kl-000834.pdf

Безруков А. И. Математическое и имитационное моделирование: учеб. пособие / А.И. Безруков, О.Н. Алексенцева.- М.: ИНФРА-М, 2017. - 227 с. + Доп. материалы [Электронный ресурс; Режим доступа http://www.znanium.com]. - www.dx.doi.org/10.12737/textbook_59006f8ec13df8.73891496. http://znanium.com/bookread2.php?book=811122

Тарасик В. П. Математическое моделирование технических систем: учебник / В.П. Тарасик. ? Минск: Новое знание; М.: ИНФРА-М, 2018. ? 592 c. http://znanium.com/bookread2.php?book=549747

7.2. Дополнительная литература:

Карлсон М. Р. Практическое моделирование нефтегазовых пластов/ М. Р. Карлсон.? Москва Ижевск Институт компьютерных исследований (2014) .?944c. -5 экз

Карнаухов М.Л. Современные методы гидродинамических исследований скважин: справочник инженера по исследованию скважин: уч. пос. для студ. высших учебных заведений/ М. Л. Карнаухов, Е. М. Пьянкова.? Москва: Инфра-Инженерия, 2013.? 432с--10

Теория и практика моделирования разработки нефтяных месторождений в различных геолого-физических условиях / Хисамов Р.С., Ибатуллин Р.Р., Никифоров А.И., Иванов А.Ф., Низаев Р.Х. - Казань: Изд-во 'Фэн' Академии наук РТ, 2009. 239 с. -9экз

Котляров, В.П. Основы тестирования программного обеспечения [Электронный ресурс] : учеб. пособие ? Электрон. дан. ? Москва : , 2016. ? 248 с. ? Режим доступа: https://e.lanbook.com/book/100352.

Вознесенский, А.С. Компьютерные методы в научных исследованиях : учебник [Электронный ресурс] : учеб. ? Электрон. дан. ? Москва : МИСИС, 2016. ? 227 с. ? Режим доступа: https://e.lanbook.com/book/93672.

Изучение теплофизических процессов и свойств веществ с использованием методов компьютерного моделирования [Электронный ресурс] : учеб. пособие ? Электрон. дан. ? Москва : МГТУ им. Н.Э. Баумана, 2013. ? 82 с. ? Режим доступа: https://e.lanbook.com/book/52436

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

понятия моделирования - http://bourabai.ru/library/cm.pdf

программное обеспечения для разработки месторождений - http://sis.slb.ru/sis/ECLIPSE/

c-p://ru.scribd.com/doc/74468323/Heriot-Watt-University-Reservoir-Simulation

C-

https://mining-media.ru/ru/article/geoinformsys/847-modelirovanie-plastovykh-mestorozhdenij-pri-pomoshchi-ggis-micromine-2 c -

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Лекционный курс. Лекционный курс способствует формированию общего представления об изучаемой теме, поэтому рекомендуется изучение литературы и источников сети Интернет, представленных в рабочей программе. Перед очередной лекцией необходимо просмотреть по конспекту материал предыдущей лекции. При затруднениях в восприятии материала надо обратиться к основным литературным источникам. Изучив команды отдельной секции, обобщить для себя ее назначение и требуемую последовательность команд. Практические занятия. Проводятся на компьютерах. До очередного практического занятия по конспекту (или литературе) проработать теоретический материал, соответствующий темы занятия; в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач,

В процессе изучения курса, студенты познакомятся с основными особенностями и ключевыми словами ECLIPSE модели черной нефти. Моделью черной нефти называют математическую модель фильтрации трехфазного флюида в пласте, записанную с некоторыми предположениями и допущениями.

заданных для самостоятельного решения; иметь при себе конспект лекций. В процессе создания проекта не

- Простейшая гидродинамическая модель это модель материального баланса.
- В модели материального баланса используются осредненные величины и не учитывается пространственное распределение и неоднородность.
- Гидродинамическое моделирование это дискретное, конечно разностное, представление пространственной системы.
- Учитывается пространственное распределение свойств флюида и породы (пространственная дискретизация).
- Моделирование во времени осуществляется дискретными шагами и запрос может быть сделан на любой шаг (временная дискретизация).
- Это хороший инструмент для гидродинамического моделирования, требующий хорошего инженерного мышления.
- Он может быть использован для решения проблем, которые не могут быть решены каким-либо другим способом, т.к. он численный, а не аналитический.

Почему гидродинамическое моделирование?

упускать из виду физический смысл команд...

- Оно может использоваться для быстрой и дешевой оценки различных вариантов разработки
- Оно может достаточно точно моделировать реальные геологические структуры и петрофизику
- Оно позволяет моделировать широкий спектр технологических мероприятий
- Принимается банками и фондовыми организациями как доказательство для инвестирования
- Во многих странах требуется законодательством

Почему Eclipse?

- Используется почти во всех нефтяных компаниях и во многих правительственных учреждениях. В некоторых частях света это только Eclipse. Около 300 компаний по всему миру используют Eclipse.
- Тестируется начиная с его запуска в SPE San Francisco в 1983 году и доказал свою надежность. Поддерживается на многих платформах
- Широкий спектр опций для моделирования практически любого варианта разработки плюс специализированные

дополнительные опции (ECLIPSE 300).

- Существуют вспомогательные программные пакеты для подготовки данных и обработки результатов моделирования: ECLIPSE OFFICE, VFPI, PSEUDO, и GRAF. Дополнительно, существуют GRID, FLOGRID, SCAL, SCHEDULE, SIMOPT, PVTI, и FLOVIZ. Во многих частях мира есть команды поддержки для обеспечения помощи пользователям.
- Существуют квалифицированные команды разработчиков, работающих на ECLIPSE. Происходит постоянное развитие, базирующееся на нуждах промышленности.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Освоение дисциплины "Вычислительные программные средства геофизики" предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows Professional 7 Russian Пакет офисного программного обеспечения Microsoft Office 2010 Professional Plus Russian Браузер Google Chrome Adobe Reader XI

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Освоение дисциплины "Вычислительные программные средства геофизики" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления. оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;

- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 03.04.03 "Радиофизика" и магистерской программе Радиофизические методы по областям применения.

