МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

УТВЕРЖДАЮ

Программа дисциплины

Теория суперсимметрии Б1.В.ДВ.1

Направление подготовки: <u>03.04.02 - Физика</u>					
Профиль подготовки: Теоретическая и математическая физика					
Форма обучения: очное					
Язык обучения: <u>русский</u>					
Автор(ы):					
Аминова А.В., Аминова Ася Васильевна					
Рецензент(ы):					
Таюрский Д.А., Таюрский Дмитрий Альбертович					
СОГЛАСОВАНО:					
Заведующий(ая) кафедрой: Сушков С. В.					
Протокол заседания кафедры No от "" 201г					
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от " " 201 г					
· —— —— ——					
Регистрационный No					
Казань					

2016

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Аминова А.В. Кафедра теории относительности и гравитации Отделение физики , Asya.Aminova@kpfu.ru ; Аминова Ася Васильевна

1. Цели освоения дисциплины

Целями освоения дисциплины 'Теория суперсимметрий' (Б1.В.ДВ.1) являются закрепление и углубление знаний, полученных при изучении дисциплин: 'Физика атомного ядра и элементарных частиц', 'Общая теория относительности', 'Квантовая теория поля' и 'Дифференцируемые многообразия и риманова геометрия'; изучение основных принципов и методов суперсимметричных физических теорий, овладение математическим аппаратом теории суперсимметрий, знакомство с современными тенденциями в развитии суперсимметричных полевых теорий и углубление представлений студентов о природе и взаимосвязи фундаментальных взаимодействий.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.1 Дисциплины (модули)" основной образовательной программы 03.04.02 Физика и относится к дисциплинам по выбору. Осваивается на 1 курсе, 2 семестр.

Дисциплина 'Теория суперсимметрий' является вариативной частью естественнонаучного цикла дисциплин для магистров по направлению подготовки 03.04.02 'Физика', профиль 'Теоретическая и математическая физика'. Обучающийся должен владеть знаниями и уменьями, полученными при изучении дисциплин математического и естественнонаучного цикла, а также базовой части профессионального цикла (модуль 'Теоретическая физика') и дисциплин 'Специальная теория относительности', 'Общая теория относительности', 'Теория спиноров' и 'Квнтовая теория поля'. Основные положения дисциплины 'Теория суперсимметрий' должны использоваться в дальнейшем при изучении следующих дисциплин: 'Современные проблемы физики', 'Физика высоких энергий и космология', 'Калибровочные поля'. Освоение дисциплины 'Теория суперсимметрий' необходимо также как предшествующее для научно-исследовательской практики по теориии струн и суперструн.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции				
ок-1	способностью к абстрактному мышлению, анализу, синтезу				
пк-1	способностью самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и зарубежного опыта				
пк-2	способностью свободно владеть разделами физики, необходимыми для решения научно-инновационных задач, и применять результаты научных исследований в инновационной деятельности				
пк-5	способностью использовать навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей				
пк-6	способностью руководить научно-исследовательской деятельностью обучающихся младших курсов в области физики				

Шифр компетенции	Расшифровка приобретаемой компетенции
	способностью методически грамотно строить планы лекционных и практических занятий по разделам учебных
	дисциплин и публично излагать теоретические и практические разделы учебных дисциплин в соответствии с утвержденными учебно-методическими пособиями

В результате освоения дисциплины студент:

1. должен знать:

базовые понятия и факты алгебры и анализа с антикоммутирующими переменными и теории суперсимметрий; иметь представление об особенностях и основных идеях новейших теоретических исследований в области квантовой физики, использующих суперсимметричный подход.

2. должен уметь:

дифференцировать и интегрировать функции со значениями в грассмановой алгебре, освоить основные приемы вычислений в теории супергрупп и теории супермногообразий, использовать основные принципы и методы теории суперсимметрий в своей научно-исследовательской деятельности.

3. должен владеть:

основными разделами теории суперсимметрий, необходимыми для решения научно-исследовательских задач (в соответствии со своей магистерской программой).

применять понятия и факты алгебры и анализа с антикоммутирующими переменными и теории суперсимметрий при решении научно-исследовательских задач

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.); 54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	COMOCTOS	Виды и часы аудиторной работы, их трудоемкость (в часах) Лекции Практические Лабораторные занятия работы		Текущие формы контроля	
1.	Тема 1. Алгебра и анализ с антикоммугирующими переменными.	2	1,2	2	0	2	устный опрос
2.	Тема 2. Супералгебры и супергруппы Ли.	2	3,4	2	0	3	письменное домашнее задание
	Тема 3. Суперпространство и суперполя.	2	5	3	0	2	устный опрос
4.	Тема 4. Суперсимметричные калибровочные теории. Суперсимметрия и супергравитация.	2	6	2	0	3	письменное домашнее задание
5.	Тема 5. Теория Зайберга-Виттена.	2	7	3	0	2	устный опрос
	Тема . Итоговая форма контроля	2		0	0	0	экзамен
	Итого			12	0	12	

4.2 Содержание дисциплины

Тема 1. Алгебра и анализ с антикоммугирующими переменными.

лекционное занятие (2 часа(ов)):

Общие сведения об ассоциативных алгебрах. Алгебры Грассмана. Система образующих грассмановой алгебры. Автоморфизм четности. Подалгебры и факторалгебры грассмановой алгебры. Градуированное линейное пространство. Функции со значениями в грассмановой алгебре. Грассмановы аналитические функции. Четные и нечетные образующие алгебры функций со значениями в грассмановой алгебре. Теорема о неявных функциях.

лабораторная работа (2 часа(ов)):

Анализ функций от антикоммутирующих переменных. Дифференцирование. Интегрирование. Супердетерминант (березиниан). Супермногообразия. Градуированные алгебры Ли. Суперслед. Суперкиллингова форма. Классификация простых конечномерных супералгебр Ли.

Тема 2. Супералгебры и супергруппы Ли. лекционное занятие (2 часа(ов)): Супералгебры Ли. Супергруппы Ли. Супергруппа Пуанкаре. Алгебра суперсимметрий и ее представления. Супермультиплеты. Супералгебры Ли. Супергруппы Ли. Супергруппа Пуанкаре. Алгебра суперсимметрий и ее представления. Супермультиплеты Градуированные алгебры Ли. Суперслед и суперкиллингова форма.

лабораторная работа (3 часа(ов)):

Построить Z_2 градуированную алгебру Ли (супералгебру Ли), порожденную генераторами заданной алгебры Ли малой размерности.

Тема 3. Суперпространство и суперполя.

лекционное занятие (3 часа(ов)):

Суперпространство. Суперпреобразование. Киральные суперполя. Суперковариантные производные. Суперсимметричные действия. Векторные суперполя. Модель Весса-Зумино.

лабораторная работа (2 часа(ов)):

Суперпространство. Суперпреобразование. Киральные суперполя. Суперковариантные производные. Суперсимметричные действия. Векторные суперполя. Модель Весса-Зумино.

Тема 4. Суперсимметричные калибровочные теории. Суперсимметрия и супергравитация.

лекционное занятие (2 часа(ов)):

N=1 суперсимметричная калибровочная теория. Суперсимметричная КХД. N=2 суперсимметричная янг-миллсовская теория. Спонтанно нарушенная суперсимметрия. Суперсимметрия и супергравитация.

лабораторная работа (3 часа(ов)):

Упр. 1. Найти закон преобразования вещественного скалярного суперполя в компонентах относительно инфинитезимальных преобразований в суперпространстве простой (N=1) суперсимметрии. Упр. 2. Используя результаты Упр. 1, выписать генераторы суперпреобразований. Упр. 3. Вычислив суперкоммутаторы генераторов из Упр. 2, получить структурные соотношения супералгебры Пуанкаре. *Упр. 4. Решить задачи, приведенные на странице http://theorphys.phys.msu.ru/education/zad_susy.pdf.

Тема 5. Теория Зайберга-Виттена.

лекционное занятие (3 часа(ов)):

Низкоэнергетическое эффективное действие N=2 суперсимметричной калибровочной теории. Дуальность Зайберга-Виттена. Монополи.

лабораторная работа (2 часа(ов)):

Низкоэнергетическое эффективное действие N=2 суперсимметричной калибровочной теории. Дуальность Зайберга-Виттена. Монополи.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Алгебра и анализ с антикоммугирующими переменными.	2	/	подготовка к устному опросу	12	устный опрос
2.	Тема 2. Супералгебры и супергруппы Ли.	2	ŕ	подготовка домашнего задания	10	домашнее задание
	Тема 3. Суперпространство и суперполя.	2	5	подготовка к устному опросу	12	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
4.	Тема 4. Суперсимметричные калибровочные теории. Суперсимметрия и супергравитация.	2	6	подготовка домашнего задания	12	домашнее задание
5.	Тема 5. Теория Зайберга-Виттена.	2	/	подготовка к устному опросу	2	устный опрос
	Итого				48	

5. Образовательные технологии, включая интерактивные формы обучения

интернет-технологии, использование систем аналитических вычислений.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Алгебра и анализ с антикоммугирующими переменными.

устный опрос, примерные вопросы:

Общие сведения об ассоциативных алгебрах. Алгебры Грассмана. Система образующих грассмановой алгебры. Автоморфизм четности. Подалгебры и факторалгебры грассмановой алгебры. Градуированное линейное пространство. Функции со значениями в грассмановой алгебре. Грассмановы аналитические функции. Четные и нечетные образующие алгебры функций со значениями в грассмановой алгебре. Теорема о неявных функциях. практическое занятие (2 часа(ов)): Анализ функций от антикоммутирующих переменных. Дифференцирование. Интегрирование. Супердетерминант (березиниан). Супермногообразия. Тема 2. Супералгебры и супергруппы Ли. лекционное занятие (2 часа(ов)): Супералгебры Ли. Супергруппы Ли. Супергруппа Пуанкаре. Алгебра суперсимметрий и ее представления. Супермультиплеты. Градуированные алгебры Ли. Суперслед и суперкиллингова форма. практическое занятие (2 часа(ов)): Градуированные алгебры Ли. Суперслед. Суперкиллингова форма. Классификация простых конечномерных супералгебр Ли. Тема 3. Суперпространство и суперполя. лекционное занятие (2 часа(ов)): Суперпространство. Суперпреобразование. Киральные суперполя. Суперковариантные производные. Суперсимметричные действия. Векторные суперполя. Тема 4. Суперсимметричные калибровочные теории. лекционное занятие (2 часа(ов)): N=1 суперсимметричная калибровочная теория. Суперсимметричная КХД. N=2 суперсимметричная янг-миллсовская теория. Спонтанно нарушенная суперсимметрия. Тема 5. Теория Зайберга-Виттена. лекционное занятие (2 часа(ов)): Низкоэнергетическое эффективное действие N=2 суперсимметричной калибровочной теории. Дуальность Зайберга-Виттена. Монополи.

Тема 2. Супералгебры и супергруппы Ли.

домашнее задание, примерные вопросы:

Построить Z_2 градуированную алгебру Ли (супералгебру Ли), порожденную генераторами заданной алгебры Ли малой размерности.

Тема 3. Суперпространство и суперполя.

устный опрос, примерные вопросы:

Суперпространство. Суперпреобразование. Киральные суперполя. Суперковариантные производные. Суперсимметричные действия. Векторные суперполя. Модель Весса-Зумино.

Тема 4. Суперсимметричные калибровочные теории. Суперсимметрия и супергравитация.

домашнее задание, примерные вопросы:

Упр. 1. Найти закон преобразования вещественного скалярного суперполя в компонентах относительно инфинитезимальных преобразований в суперпространстве простой (N=1) суперсимметрии. Упр. 2. Используя результаты Упр. 1, выписать генераторы суперпреобразований. Упр. 3. Вычислив суперкоммутаторы генераторов из Упр. 2, получить структурные соотношения супералгебры Пуанкаре. *Упр. 4. Решить задачи, приведенные на странице http://theorphys.phys.msu.ru/education/zad susy.pdf.

Тема 5. Теория Зайберга-Виттена.

устный опрос, примерные вопросы:

Низкоэнергетическое эффективное действие N=2 суперсимметричной калибровочной теории. Дуальность Зайберга-Виттена. Монополи.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Билет 1.

- 1. Общие сведения об ассоциативных алгебрах.
- 2. Супердетерминант.

Билет 2.

- 1. Алгебры Грассмана.
- 2. Супермногообразие.

Билет 3.

- 1. Система образующих грассмановой алгебры.
- 2. Суперсимметрия.

Билет 4.

- 1. Автоморфизм четности.
- 2. Суперсимметричные действия. Билет 5.
- 1. Автоморфизмы грассмановой алгебры.
- 2. Суперпространство.

Билет 6.

- 1. Антиавтоморфизмы грассмановой алгебры.
- 2. Дуальность Зайберга-Виттена.

Билет 7.

- 1. Факторалгебры грассмановой алгебры.
- 2. Алгебра суперсимметрий и ее представления.

Билет 8.

- 1. Подалгебры алгебры грассмановой алгебры.
- 2. Спонтанно нарушенная суперсимметрия.

Билет 9.

- 1. Четность.
- 2. Суперковариантные производные.

Билет 10.

- 1. Градуированное линейное пространство.
- 2. Супергруппа Пуанкаре.

Билет 11.

- 1. Функции со значениями в грассмановой алгебре.
- 2. Киральные суперполя.

Билет 12.

- 1. Грассмановы аналитические функции.
- 2. Суперпреобразование.

Билет 13.

- 1. Четные образующие алгебры функций со значениями в грассмановой алгебре.
- 2. Суперкиллингова форма.

Билет 14.

- 1. Нечетные образующие алгебры функций со значениями в грассмановой алгебре.
- 2. Суперполе.

Билет 15.

- 1. Суперпроизводная и ее свойства.
- 2. Векторные суперполя.

Билет 16.

- 1. Теорема о неявных функциях антикоммутирующих переменных.
- 2. N=1 суперсимметричная калибровочная теория.

Билет 17.

- 1. Анализ функций антикоммутирующих переменных.
- 2. Низкоэнергетическое эффективное действие.

Билет 18.

- 1. Дифференцирование функций антикоммутирующих переменных.
- 2. Супералгебра Ли.

Билет 19.

- 1. Интегрирование функций антикоммутирующих переменных.
- 2. N=2 суперсимметричная янг-миллсовская теория.

7.1. Основная литература:

1. Бернштейн, Лейтес Д.А., Шандер, Семинар по суперсимметриям, Т. 1. Алгебра и анализ. Основные факты, Под ред. Д. А. Лейтеса и с дополнениями В. В. Молоткова - М.: МЦНМО, 2011. - 410 с.

http://rffi.molnet.ru/rffi/ru/books/o 491623 (сайт РФФИ)

- 2. Березин Ф.А., Введение в суперанализ, Электронное издание, М.: МЦНМО, 2014, 432 с. http://e.lanbook.com/view/book/56394/page2/
- 3. Высоцкий М.И. Лекции по теории электрослабых взаимодействий. М.: Физматлит, 2011. 152 с.

http://e.lanbook.com/view/book/2712/page3/ (издательство "Лань")

7.2. Дополнительная литература:

Теория относительности, гравитация и геометрия, Аминова, Ася Васильевна;Петров, Алексей Зиновьевич, 2010г.

Гравитация и астрофизика, Бескин, Василий Семенович, 2009г.

7.3. Интернет-ресурсы:

Архив электронных публикаций научных статей - www.arxiv.org Кафедра теоретической физики физического факультета МГУ http://theorphys.phys.msu.ru/education/zad_susy.pdf Мир теории струн - http://stringworld.ru/library/books-for-graduate

Сайт кафедры теории относительности и гравитации - http://kpfu.ru/physics/struktura/kafedry/kafedra-teorii-otnositelnosti-i-gravitacii, http://old.kpfu.ru/f6/k6/index.php

Электронная библиотека - http://znanium.com/, http://eqworld.ipmnet.ru/indexr.htm Электронная библиотека механико-математического факультета Московского государственного университета - http://lib.mexmat.ru/allbooks.php

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Теория суперсимметрии" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя. включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Znanium.cm", доступ к которой предоставлен студентам. Сайт http://stringwrld.ru содержит разделы "Струнная библиотека" и "Струнные веб-ресурсы", где также можно найти учебно-методическую литературу для данной дисциплины.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.04.02 "Физика" и магистерской программе Теоретическая и математическая физика.

Автор(ы):			
Аминова А.В		 	
Аминова Ася Василь	евна		
""201 _	г.		
Рецензент(ы):			
Таюрский Д.А			
Таюрский Дмитрий А	4 льбертович		
""201 _	г.		