МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт геологии и нефтегазовых технологий

подписано электронно-цифровой подписью

Программа дисциплины

Геофизические исследования Б1.В.ДВ.4

Направление подготовки:	21.04.01 -	Нефтегазовое дело
-------------------------	------------	-------------------

Профиль подготовки: Освоение высоковязкой нефти и природных битумов

Квалификация выпускника: магистр

Форма обучения: очное Язык обучения: русский

Автор(ы):

Нургалиев Д.К., Хасанов Д.И.

Рецензент(ы): Кемалов А.Ф.

<u>СОГЛАСОВАНО:</u>		
Заведующий(ая) кафедрой: Нургалиев Д. К. Протокол заседания кафедры No от "	_"20	1г
Учебно-методическая комиссия Института гео Протокол заседания УМК No от ""	логии и нефтегазо 201	
Регистрационный No 38217		
Казань		
2017		

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) проректор по научной деятельности Нургалиев Д.К. Ректорат КФУ, Danis.Nourgaliev@kpfu.ru; доцент, к.н. (доцент) Хасанов Д.И. кафедра геофизики и геоинформационных технологий Институт геологии и нефтегазовых технологий, Damir.Khassanov@kpfu.ru

1. Цели освоения дисциплины

Ознакомить студентов с теоретическими основами геофизических исследований скважин, а также дать представление о практических методах проведения работ в скважинах.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.4 Дисциплины (модули)" основной образовательной программы 21.04.01 Нефтегазовое дело и относится к дисциплинам по выбору. Осваивается на 1 курсе, 2 семестр.

Для изучения дисциплины "Геофизические исследования скважин" необходимо знакомство студентов с курсами математики и физики в объеме высшей школы естественнонаучных факультетов. Курс "Геофизические исследования скважин" является одним из основных курсов профессионального цикла БЗ.В.2. Изучается на 3 курсе в 6 семестре.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-10 (профессиональные компетенции)	готовность применения на практике базовых общепрофессиональных знаний теории и методов полевых геологических, геофизических, геохимических, гидрогеологических, нефтегазовых и экологогеологических исследований при решении научно-производственных задач (в соответствии с профилем подготовки
ПК-9: (профессиональные компетенции)	способность работать с информацией в глобальных компьютерных сетях

В результате освоения дисциплины студент:

- 1. должен знать:
- Обладать теоретическими знаниями о распределении в скважинах физических полей различной природы
- 2. должен уметь:
- Ориентироваться в использовании методов ГИС для решения различных геологических и технических задач
- 3. должен владеть:
- Приобрести навыки проведения скважинных геофизических исследований и интерпретации получаемых материалов
- 4. должен демонстрировать способность и готовность:
- Приобрести навыки проведения скважинных геофизических исследований и интерпретации получаемых материалов

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	, Лабораторные работы	
	Тема 1. Электрические и электромагнитные методы	2	3-4	0	0	4	Тестирование
	Тема 2. Ядерно-физические методы ГИС	2	5-6	1	0	4	Тестирование
3.	Тема 3. Акустические методы ГИС	2	7-8	1	0	2	Тестирование
	Тема 4. Магнитные и термические методы ГИС	2	9-10	1	0	2	Тестирование
5.	Тема 5. Методы изучения технического состояния скважин, контроль разработки месторождений и прострелочно-взрывны работы в скважинах	2 e	11-12	1	0		Контрольная работа
·	Тема . Итоговая форма контроля	2		0	0	0	Зачет
	Итого			4	0	14	

4.2 Содержание дисциплины

Тема 1. Электрические и электромагнитные методы *пабораторная работа (4 часа(ов)):*

Тема 2. Ядерно-физические методы ГИС *лекционное занятие (1 часа(ов)):*

Ядерно-физические методы ГИС Взаимодействие ядерного излучения с веществом. Основные элементы аппаратуры для ядерно-физических методов. Гамма-каротаж. Методы рассеянного гамма-излучения. Метод радиоактивных изотопов. Стационарные методы нейтронного каротажа. Импульсный нейтронный каротаж. Нейтронно-активационный каротаж.

лабораторная работа (4 часа(ов)):

Тема 3. Акустические методы ГИС

лекционное занятие (1 часа(ов)):

Акустические методы ГИС Акустический каротаж. Акустический каротаж на отраженных волнах. Скважинные сейсмоакустические методы

лабораторная работа (2 часа(ов)):

Тема 4. Магнитные и термические методы ГИС

лекционное занятие (1 часа(ов)):

Магнитные и термические методы ГИС Магнитные методы исследования скважин. Термические методы исследования скважин

лабораторная работа (2 часа(ов)):

Тема 5. Методы изучения технического состояния скважин, контроль разработки месторождений и прострелочно-взрывные работы в скважинах лекционное занятие (1 часа(ов)):

Методы изучения технического состояния скважин и прострелочно-взрывные работы Изучение технического состояния скважин. Прострелочно-взрывные работы в скважинах **лабораторная работа** (2 часа(ов)):

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Электрические и электромагнитные методы	2	3-4	подготовка к тестированию	9	тестирование
2.	Тема 2. Ядерно-физические методы ГИС	2	5-6	подготовка к тестированию	10	тестирование
3.	Тема 3. Акустические методы ГИС	2	7-8	подготовка к тестированию	10	тестирование
4.	Тема 4. Магнитные и термические методы ГИС	2	9-10	подготовка к тестированию	9	тестирование
5.	Тема 5. Методы изучения технического состояния скважин, контроль разработки месторождений и прострелочно-взрывны работы в скважинах	2 e		подготовка к контрольной работе	16	контрольная работа
	Итого				54	

5. Образовательные технологии, включая интерактивные формы обучения

Проводятся лекции и лабораторные занятия с использованием компьютеров. Большая часть материала изучается самостоятельно.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Электрические и электромагнитные методы

тестирование, примерные вопросы:

Электрические и электромагнитные методы Теоретические основы электрических и электромагнитных методов. Методы электрохимической активности. Методы кажущегося сопротивления. Особенности электрометрии в горизонтальных скважинах. Электрический каротаж фокусированными зондами. Электромагнитные методы ГИС.

Тема 2. Ядерно-физические методы ГИС

тестирование, примерные вопросы:

Ядерно-физические методы ГИС Взаимодействие ядерного излучения с веществом. Основные элементы аппаратуры для ядерно-физических методов. Гамма-каротаж. Методы рассеянного гамма-излучения. Метод радиоактивных изотопов. Стационарные методы нейтронного каротажа. Импульсный нейтронный каротаж. Нейтронно-активационный каротаж.

Тема 3. Акустические методы ГИС

тестирование, примерные вопросы:

Тема 4. Магнитные и термические методы ГИС

тестирование, примерные вопросы:

Тема 5. Методы изучения технического состояния скважин, контроль разработки месторождений и прострелочно-взрывные работы в скважинах

контрольная работа, примерные вопросы:

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Максимальный суммарный балл по результатам тестирования - 30.

Оценка активности студентов во время лабораторных занятий - до 30 баллов.

Максимальный балл на зачете - 40.

- 1. Вывод формулы для потенциала точечного источника тока в однородной изотропной трехмерной среде. Принцип взаимности.
- 2. Механизм возникновения в скважине диффузионных потенциалов.
- 3. Принцип работы и конструкция инклинометров.
- 4. Условия измерений при промыслово-геофизических исследованиях: скважина, пласт и их параметры.
- 5. Назначение и физические основы акустического метода (АК).
- 6. Метод изотопов.
- 7. Физические основы семиэлектродного бокового каротажа и принципиальная схема измерений с ним.
- 8. Процессы взаимодействия 🛚 -квантов с веществом.
- 9. Резистивиметрия: назначение, принцип действия, конструкция и эталонировка резистивиметров.
- 10. Физико-геологические основы ядерно-магнитного каротажа.
- 11. Принцип работы и конструкция инклинометра непрерывного действия.
- 12. Перфорация обсадной колонны; типы перфораторов и принцип их работы.

- 13. Условия регулирования тока в методе БК и вывод формулы для расчета коэффициента зонда.
- 14. Компенсационный и некомпенсационный (токовый) способы измерения разностей потенциалов; их преимущества и недостатки.
- 15. Глубинность исследования методов электро- и радиометрии.
- 16. Вывод формулы для расчета кажущегося удельного сопротивления и коэффициента трехэлектродных зондов.
- 17. Принципы работы разрядных и сцинтилляционных счетчиков 🛚 -излучения.
- 18. Принцип разделения разностей потенциалов, создаваемых полями КС и ПС в скважине.
- 19. Понятие о диффузионно-адсорбционном потенциале и процессах, обуславливающих его возникновение.
- 20. Назначение и физические основы метода микрокаротажа. Конструкция зондов и методика измерений.
- 21. Разновидности принципиальных схем для одновременной регистрации в скважинах кривых КС и ПС трехэлектродными зондами.
- 22. Понятие об удельном и кажущемся удельном сопротивлении пород и параметры, от которых они зависят.
- 23. Принцип работ и блочная схема каротажной лаборатории (станции).
- 24. Метод рассеянного □-излучения и его разновидности (ГГК-П и ГГК-М).
- 25. Процессы взаимодействия нейтронов с веществом.
- 26. Типы трехэлектродных электрокаротажных зондов и их характеристика.
- 27. Понятие об инверсии зондов радиометрии скважин.
- 28. Классификация методов электрометрии скважин и их краткая характеристика.
- 29. Метод плотности надтепловых нитронов (ННК-НТ)
- 30. Синхронизация движения скважинного прибора носителя записи каротажной станции (сельсины).
- 31. Поле ПС в скважине и факторы, влияющие на его величину и конфигурацию.
- 32. Нейтронный □-метод (НГК).
- 33. Определение мест нарушения герметичности обсадной колонны и интервалов затрубной циркуляции жидкости с использованием термометрии и резистивиметрии.
- 34. Физические основы бокового каротажного зондирования (БКЗ).
- 35. Метод плотности тейловых нейтронов (ННК-Т)
- 36. Профилеметрия и коркометрия определение и принципы измерений.
- 37. Назначение, физические основы и конструкция зонда метода микробокового каротажа.
- 38. Метод естественной □-активности горных пород (ГК и ГК-С).
- 39. Понятие об искривлении скважин и параметрах, которыми оно характеризуется. Типы инклинометров.
- 40. Трехэлектродный боковой каротаж: принцип измерений, конструкция зонда и используемая схема.
- 41. Источники нейтронов, используемые в стационарных методах радиоактивного каротажа.
- 42. Термометрия скважин: назначение. Используемая аппаратура и методика скважинных измерений.
- 43. Принцип одновременной регистрации нескольких кривых при каротаже скважин (Частотно-модулированная телеметрия с частотным разделением каналов).
- 44. Импульсные нейтронные методы (ИННК и ИНГК).
- 45. Конструкция четырехрычажных каверномеров и электрические схемы при использовании трех- и одножильного кабеля.
- 46. Отбор грунтов и торпедирование в скважинах; типы и конструкция грунтоносов и торпед.
- 47. Понятие об электрическом каротаже и параметрах разреза и скважины, которыми определяются его показания.

- 48. Метод наведенной активности (МНА) и метод индикации элементами с аномальными нейтронными свойствами.
- 49. Физические основы метода индукционного каротажа (ИК).
- 50. Блок схема и принцип работы аппаратуры стационарного радиоактивного каротажа.
- 51. Методика измерения кривизны скважин и оформление получаемых результатов.
- 52. Фильтрационные потенциалы и условия их возникновения в скважинах.
- 53. Блок схема и принцип работы аппаратуры импульсных нейтронных методов; принцип работы и устройство разрядной трубки.
- 54. Электрические схемы и конструкция скважинных электротермометров.

7.1. Основная литература:

- 1. Шилов, Г. Я. Основные проблемы и возможности оценки фаций карбонатных пород по данным геофизических исследований скважин [Электронный ресурс] / Г. Я. Шилов // Труды Российского государственного университета нефти и газа им. И.М.Губкина, ♦4/261, 2010. С. 7 16. Режим доступа: http://znanium.com/http://znanium.com/bookread.php?book=433286
- 2. Нескоромных, В. В. Проектирование скважин на твердые полезные ископаемые [Электронный ресурс] : учеб. пособие / В. В. Нескоромных. Красноярск : СФУ, 2012. 294 с. Режим доступа: http://znanium.com/tbookread.php?book=442493
- 3. Зварыгин, В. И. Буровые станки и бурение скважин [Электронный ресурс] : учеб. пособие / В. И. Зварыгин. Красноярск : Сиб. федер. ун-т, 2011. 256 с. ISBN 978-5-7638-2219-9. http://znanium.com http://znanium.com/bookread.php?book=441889
- 4. Керимов В.Ю., Шилов Г.Я., Поляков Е.Е., Ахияров А.В., Ермолкин В.И., Сысоева Е.Н. Седиментолого-фациальное моделирование при поисках, разведке и добыче скоплений углеводородов / В.Ю. Керимов [и др.]. М.: ВНИИгеосистем, 2010. 288 с.: ил. ISBN 978-5-8481-0050-1. http://znanium.com/http://znanium.com/bookread.php?book=347312
- 5. Теоретические основы и технологии поисков и разведки нефти и газа, 2013, ♦4 / Теоретические основы и технологии поисков и разведки нефти и газа, ♦4, 2013. http://znanium.com/bookread.php?book=426809

7.2. Дополнительная литература:

1.Теоретические основы и технологии поисков и разведки нефти и газа, 2012, ◆2 / Теоретические основы и технологии поисков и разведки нефти и газа, ◆2, 2012http://znanium.com/bookread.php?book=426824

7.3. Интернет-ресурсы:

ОАО НПФ ?Геофизика? - www.npf-geofizika.ru Геологический портал GeoKniga - http://www.geokniga.org Горная энциклопедия - http://enc-dic.com/enc_rock/N/ ООО - http://www.tng.ru/ ООО ?Геоинформационные технологии и системы? - http://gintel.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Геофизические исследования" предполагает использование следующего материально-технического обеспечения:

Для обучения по данной программе имеется хорошо оборудованный учебный компьютерный класс, содержащий:

- 1. Компьютеры, соединенные в локальную сеть;
- 2. Видеопроектор;
- 3.Сканеры;
- 4.Принтер

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 21.04.01 "Нефтегазовое дело" и магистерской программе Освоение высоковязкой нефти и природных битумов .

Автор(ы):			
Нургалиев Д.К	, 		
Хасанов Д.И.			
""	_ 201 _	_ г.	
Рецензент(ы):			
Кемалов А.Ф.			
" " 	_ 201 _	_ г.	