МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Программирование на языке Scala ФТД.Б.2

Направление подготовки: 03.03.03 - Радиофизика

Профиль подготовки: Специальные радиотехнические системы

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Акчурин А.Д., Ильдиряков В.Р.

Рецензент(ы):<u>Зыков Е.Ю.</u>

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Акчурин А. Д.		
Протокол заседания кафедры No от ""	201_	
Учебно-методическая комиссия Института физики:		
Протокол заседания УМК No от ""	_ 201г	

Регистрационный № 6169919

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Акчурин А.Д. Кафедра радиоастрономии Отделение радиофизики и информационных систем, Adel.Akchurin@kpfu.ru; ассистент, б.с. Ильдиряков В.Р. Кафедра программной инженерии Высшая школа информационных технологий и интеллектуальных систем, VRIIdiryakov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины Программирование на языке Scala являются освоение синтаксиса языка и стандартной библиотеки языка программирования Scala, изучение и получения навыков объектно-ориентированного и функционального программирования с использованием языка программирования Scala.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел 'Б.2 Факультативы' основной образовательной программы 03.03.03 Радиофизика 'Специальный радиотехнические системы' (бакалавриат) и относится к базовой (общепрофессиональной) части. Осваивается на 4 курсе, 1 семестр. Федеральный государственный образовательный стандарт по направлению подготовки 03.03.03 Радиофизика 'Специальный радиотехнические системы' (бакалавриат), предусматривает изучение дисциплины 'Программирование на языке Scala' в составе факультативного курса. Дисциплина занимает место в системе курсов, ориентированных на изучение принципов построения и разработки информационных систем, применяющихся для построения систем сбора, хранения, передачи и численной обработки данных. Кроме того, преподавание этого курса обеспечивает студентов современными знаниями, о новых перспективных средствах разработки программного обеспечения, начинающих применяться в современном обществе, потребности которого в обработке информации неуклонно возрастают. В процессе изучения данного курса осуществляется формирование знаний достаточно новой парадигмы программирования, начинающей применяться в радиофизических и физических исследованиях, в том числе и для эффективной обработки экспериментальной информации и численного физического моделирования явлений и систем. Также осуществляется формирование умения на практике применять полученные теоретические и практические знания при выполнении курсовых и дипломных работ, ориентироваться в справочной, учебно-методической литературе, приобретения навыков разработки программ с применением парадигмы объектно ориентированного и функционального программирования.

Для освоения данной дисциплины необходимы знания, полученные обучающимися на первом курсе обучения, в частности, они должны иметь общее представление об алгоритмах, структурном и объектно-ориентированном программировании.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
HANIIIAKURETUNUEIA	Способность к правильному использованию общенаучной и специальной терминологии.
ОК-14 (общекультурные компетенции)	Способность к овладению базовыми знаниями в области информатики и современных информационных технологий, программными средствами и навыками работы в компьютерных сетях, использованию баз данных и ресурсов Интернет.

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-2 (профессиональные компетенции)	Способность применять на практике базовые профессиональные навыки.
ПК-3 (профессиональные компетенции)	Способность использовать языки, системы и инструментальные средства программирования в профессиональной деятельности.
ПК-5 (профессиональные компетенции)	Способность к владению компьютером на уровне опытного пользователя, применению информационных технологий для решения задач в области радиотехники, радиоэлектроники и радиофизики (в соответствии с профилизацией).
ПК-8 (профессиональные компетенции)	Способность к освоению новых образцов программных, технических средств и информационных технологий.

В результате освоения дисциплины студент:

1. должен знать:

принципы объектно-ориентированного программирования, особенности и принципы функционального программирования, синтаксис языка Scala, способы применения стандартной библиотеки Scala и Java.

2. должен уметь:

разрабатывать программы с променяем языка программирования Scala.

3. должен владеть:

практическими навыками составления программ на языке Scala, навыки применения среды разработки.

4. должен демонстрировать способность и готовность:

применять знания, навыки, способность и готовность: к практическому применению полученных знаний.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 1 зачетных(ые) единиц(ы) 36 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	аудит их т	иды и час орной ра рудоемк (в часах)	аботы, ость	Текущие формы контроля	
	Модуля		Семестра	Лекции		Лабора- торные работы	контроля	
N	Раздел Дисциплины/	Семестр	Неделя				Текущие формы контроля	
	Модуля		семестра	Лекции		Лабора- торные работы	контроля	
1.	Тема 1. Обзор парадигм программирования. Перспективы развития языка Scala.	7	1	2	0	0	Письменное домашнее задание	
	Тема 2. Базовые сведения. Типы и описания. Классы. Операции. Выражения и операторы. Структура программы. Сложные типы данных: ссылочные типы данных.	7	2	2	0	0	Письменное домашнее задание	
	Тема 3. Расширение языка Конструкторы и деструкторы. Использование классов для объектно-ориентированного программирования. Ввод и вывод в Scala. Работа с файлами.	7	3	2	0	0	Письменное домашнее задание	
 	Тема 4. Принципы объектно-ориентированного программирования. Инкапсуляция. Атрибуты членов классов. Наследование. Полиморфизм. Виртуальные операции. Перегрузка операций и функций.	7	4-5	4	0	0	Письменное домашнее задание	
	Тема 5. Принципы функционального программирования.	7	6-7	4	0	0	Письменное домашнее задание	
6.	Тема 6. Обработка ошибок в Scala.	7	8	2	0	0	Письменное домашнее задание	
4.2	Тема 7. Шаблоны классов. Соневжание щаблонны инассов.	7	9	2	0	0	Письменное домашнее задание	
	а 1. Обзор парадигм программиро Диминые сканитие (20 мася (отру)ля	эвания. 7	нерспе	ктивы 0	развити 0	IЯ ЯЗЫК 0	а Scala. Зачет	
Обз про про	ор парадигм программирования: прифаммирования: прифаммирование, объектно-ориентирование, функциональное прогото языка среди других языков прог	ованно оограмм	програ провани	раммир мм ир ов	ование, ани е , ав	структу том2атно	þе	

Э Л Е К Т Р О Н Н Ы Й УНИВЕРСИТЕТ

ИНООМЫЛНО АНАЛИТИЧЕСКАЯ СИСТЕМА КНУ

Тема 2. Базовые сведения. Типы и описания. Классы. Операции. Выражения и операторы. Структура программы. Сложные типы данных: ссылочные типы данных. *лекционное занятие (2 часа(ов)):*

Литералы. Типы и описания. Типы значения.Сложные типы данных: ссылочные типы данных. Функции. Использование переменного количества аргументов Классы. Основы синтаксиса классов. Операции (методы). Выражения и операторы. Структура программы. Работа с интерпретатором языка Scala.

Тема 3. Расширение языка Конструкторы и деструкторы. Использование классов для объектно-ориентированного программирования. Ввод и вывод в Scala. Работа с файлами.

лекционное занятие (2 часа(ов)):

Расширение языка. Иерархия классов Scala. Конструкторы и деструкторы. Абстакции. Функциональные абстракции. Абстрактные члены. Использование классов для объектно-ориентированного программирования. Case классы. Синтаксис операций ввода и вывода в Scala. Работа с файлами

Тема 4. Принципы объектно-ориентированного программирования. Инкапсуляция. Атрибуты членов классов. Наследование. Полиморфизм. Виртуальные операции. Перегрузка операций и функций.

лекционное занятие (4 часа(ов)):

Принципы объектно-ориентированного программирования. Принцип инкапсуляции. Реализация механизмов инкапсуляции. Атрибуты членов классов. Принцип наследования. Моделирование обобщенных (generic) типов с помощью абстрактных типов. Дженерики. Полиморфизм. Виртуальные операции. Перегрузка операций и функций. Объектно-ориентированная декомпозиция.

Тема 5. Принципы функционального программирования.

лекционное занятие (4 часа(ов)):

Принципы функционального программирования. Каждая функция - это значение. Анонимные функции. Частичный вызов функций. Каррирование функций. Синтаксис языка Scala для определения анонимных и карринговых функций. Сопоставление с образцом. Использование регулярных выражений.

Тема 6. Обработка ошибок в Scala.

лекционное занятие (2 часа(ов)):

Обработка ошибок в Scala. Исключения в языке Scala. Синтаксис оператора try-catch-finally.

Тема 7. Шаблоны классов. Применение шаблонов классов.

лекционное занятие (2 часа(ов)):

Композиция. Повторное использование классов. Трейты. Применение шаблонов классов. Иерархическое представление классов и трейтов. Виды (views). Списки, Карты, функциональные комбинаторы (map, foreach, filter, zip, folds). Интеграция с Java.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел дисциплины	Се- местр	Неде- ля семе стра		Трудо- емкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Обзор парадигм программирования. Перспективы развития языка Scala.	7	1	подготовка домашнего задания	2	Письмен- ное домаш- нее задание

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самосто-ятельной работы
2.	Тема 2. Базовые сведения. Типы и описания. Классы. Операции. Выражения и операторы. Структура программы. Сложные типы данных: ссылочные типы данных.	7	2	подготовка домашнего задания	2	Письмен- ное домаш- нее задание
3.	Тема 3. Расширение языка Конструкторы и деструкторы. Использование классов для объектно-ориен- тированного программирова- ния. Ввод и вывод в Scala. Работа с файлами.	7	3	подготовка домашнего задания	2	Письмен- ное домаш- нее задание
4.	Тема 4. Принципы объектно-ориен- тированного программирова- ния. Инкапсуляция. Атрибуты членов классов. Наследование. Полиморфизм. Виртуальные операции. Перегрузка операций и функций.	7	4-5	подготовка домашнего задания	4	Письмен- ное домаш- нее задание
	Тема 5. Принципы функционального программирова- ния.	7	6-7	подготовка домашнего задания	4	Письмен- ное домаш- нее задание

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самостоятельной работы
	Тема 6. Обработка ошибок в Scala.	7	8	подготовка домашнего задания	2	Письмен- ное домаш- нее задание
7.	Тема 7. Шаблоны классов. Применение шаблонов классов.	7	9	подготовка домашнего задания	2	Письмен- ное домаш- нее задание
	Итого				18	

5. Образовательные технологии, включая интерактивные формы обучения

Освоение дисциплины предполагает использование традиционных образовательных технологий: лекционных и практических занятий к компьютерном классе с привлечением мультимедийных технологий при объяснении материала.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Обзор парадигм программирования. Перспективы развития языка Scala.

Письменное домашнее задание, примерные вопросы:

Повторение парадигм программирования. Составить таблицу с преимуществами и недостатками указанных парадигм, а также наиболее оптимальную область использования.

Тема 2. Базовые сведения. Типы и описания. Классы. Операции. Выражения и операторы. Структура программы. Сложные типы данных: ссылочные типы данных.

Письменное домашнее задание, примерные вопросы:

Установить на домашнем компьютере приложение ScalaDoc. Изучить в системе операции над стандартными типами данных. Написать простейшие программы с преобразованием целочисленных и вещественных величин в строчные и обратно с использованием операций стандартных типов.

Тема 3. Расширение языка Конструкторы и деструкторы. Использование классов для объектно-ориентированного программирования. Ввод и вывод в Scala. Работа с файлами.

Письменное домашнее задание, примерные вопросы:

Написание программы использующие основные операторы, функции, классы. Применение операций ввода/вывода. написание прогарммы рекурсивных вычислений с использованием функций-значений с выводом результат работы в файл. Написание программы использующей иерархию классов языка Scala.

Тема 4. Принципы объектно-ориентированного программирования. Инкапсуляция. Атрибуты членов классов. Наследование. Полиморфизм. Виртуальные операции. Перегрузка операций и функций.

Письменное домашнее задание, примерные вопросы:

Написание программы моделирования физического процесса, указанного преподавателем с использованием возможности и синтаксиса языка Scala в части объектно-ориентированоого программирования. Применение принципов инкапсуляции, наследования и полиморфизм обязательно.

Тема 5. Принципы функционального программирования.

Письменное домашнее задание, примерные вопросы:

На основе предыдущего домашнего задания, модифицировать программу с применением анонимных функций, частичного вызова функций. Применение сопоставления с образцом желательно.

Тема 6. Обработка ошибок в Scala.

Письменное домашнее задание, примерные вопросы:

Внесение в программу фрагментов, предусматривающих обработку ошибок с применением операторов try-catch-finally.

Тема 7. Шаблоны классов. Применение шаблонов классов.

Письменное домашнее задание, примерные вопросы:

На основе предыдущего задания переработать программу применив хотя бы один из стандартных шаблонов: списки, карты, функциональные комбинаторы (map, foreach, filter, zip, folds).

Итоговая форма контроля

зачет (в 7 семестре)

Примерные вопросы к итоговой форме контроля

Примерные вопросы к зачету:

ТЕМАТИЧЕСКИЙ ПЛАН ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО КУРСУ

Практическое занятие ♦1. Освоение среды разработки.

Практическое занятие �2. Написание простейшей программы. Структура программы, запись программы на языке Scala. Операторы. Типы данных. Элементарные операции по вводу и выводу. Выполнение практического задания по основам языка. Написание программы.

Практическое занятие ♦3. Выполнение практического задания по основам языка. Сдача программы.

Практическое занятие ♦4. Классы. Выполнение практического задания по классам. Написание программы.

Практическое занятие ♦5. Классы. Выполнение практического задания по классам. Написание программы.

Практическое занятие �6. Применение конструкторов и деструкторов. Применение полиморфизма и наследования. Выполнение практического задания по применению конструкторов и деструкторов в классах Scala. Написание программы.

Практическое занятие **♦**7. Выполнение практического задания по применению конструкторов и деструкторов в классах Scala.

Практическое занятие ◆8 Выполнение практического задания по применению конструкторов и деструкторов в классах Scala.

Практическое занятие �9. Выполнение практического задания по применению конструкторов и деструкторов в классах Scala. Сдача программы.

Практическое занятие �10. Применение принципов объектно-ориентированной программирования. Применение механизмов наследования и полиморфизма. Виртуальные операции. Перегрузка операций. Выполнение практического задания по принципам объектно ориентированного программирования.

Практическое занятие �11. Выполнение практического задания по принципам объектно ориентированного программирования.

Практическое занятие �12. Выполнение практического задания по принципам объектно ориентированного программирования. Сдача программы. Контрольная работа по теме Принципы объектно-ориентированного программирования.

Практическое занятие �13. Применение принципов функционального программирования. Классы функций. Литеральные функции. Частично примененные функции. Замыкания. Рекурсии. Выполнение практического задания по принципам объектно ориентированного программирования.

Практическое занятие ♦14. Выполнение практического задания по принципам объектно ориентированного и функционального программирования.

Практическое занятие �15. Выполнение практического задания по принципам объектно ориентированного и функционального программирования. Сдача программы. Контрольная работа по теме"Применение принципов функционального программирования".

Практическое занятие �16. Шаблоны классов и функций. Построение шаблонов. Применение шаблонов.Выполнение практического задания по применению шаблонов в программах на языке Scala.

Практическое занятие �17. Выполнение практического задания по применению шаблонов в программах на языке Scala.

Практическое занятие ◆18. Выполнение практического задания по применению шаблонов в программах на языке Scala. Сдача программы. Контрольная работа по теме"Применение принципов функционального программирования"

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ (СРС) включает следующие виды работ:

- изучение теоретического лекционного материала;
- проработка теоретического материала (конспекты лекций, основная и дополнительная литература);
- выполнение домашних заданий;
- доработка текстов программ, незаконченных на практических занятиях;
- подготовка к контрольным работам и к сдаче зачета.

ВОПРОСЫ К ЗАЧЕТУ:

- 1) Простые типы данных.
- 2) Целочисленные типы данных.
- 3) Вещественные типы данных.
- 4) Специальные типы данных.
- 5) Var и val величиы.
- 6) singleton-типы
- 7) Сложные (агрегатные) типы данных.
- 8) Классы.
- 8) Ссылки. Применение ссылок.
- 9) Структура программы.
- 10) Работа с методами. Объявления и описания.
- 11) Объектная модель данных.
- 12) Функциональная модель данных.
- 13) Классы.Конструкторы и деструкторы.
- 14) ООП. Принцип инкапсуляции.
- 15) Модификаторы доступа к членам класса.
- 16) Шаблонные операции.
- 17) ООП. Принцип наследования.
- 18) ООП. Принцип полиморфизма. Реализация принципа полиморфизма в Scala.
- 19) Уточнение поведения при наследовании классов.
- 20) Перегруженные операции.
- 21) Виртуальные операции.
- 22) Сопоставление с образцом.

- 23) Трейты
- 24) Основные операторы языка.
- 25) Частичный вызов функций.
- 26) Обработка исключений.
- 27) Атрибуты доступа к членам класса.

ПРИМЕРЫ ТЕСТОВЫХ ЗАДАНИЙ

- 1) Преобразовать целочисленные величины типов Int, Short, Long в сроку String и наоборот с использованием стандартных операций.
- 2) Преобразовать вещественные величины типов Double и Float в сроку String и наоборот с использованием стандартных операций.
- 3) Написать функцию вычисления п-мерного вектора.
- 4) Написать функцию вычисления факториала.
- 5) Написать функцию вычисления чисел Фибоначчи.
- 6) Разработать класс содержащий m членов целого типа. В классе должен быть предусмотрена операция сортировки по убыванию.
- 7) Разработать класс, содержащий m членов целого типа. В классе должен быть предусмотрена операция поиска максимального значения.
- 8) Разработать систему классов реализующие модели геометрических фигур: шар, куб, параллелепипед, конус, эллипс. С помощью механизмов наследования, полиморфизма, сопоставления с образцом, абстрактных функций или частичного вызова функций реализовать вычисление объема фигуры.
- 9) Разработать систему классов реализующие модели геометрических фигур: шар, куб, параллелепипед, конус, эллипс. С помощью механизмов наследования, полиморфизма, сопоставления с образцом, абстрактных функций или частичного вызова функций реализовать вычисление площади фигуры.
- 10) Разработать систему классов реализующие модели геометрических фигур: шар, куб, параллелепипед, конус, эллипс. С помощью механизмов наследования, полиморфизма, сопоставления с образцом, абстрактных функций или частичного вызова функций реализовать определение диаметра (максимального расстояния между двумя точками) фигуры.

7.1. Основная литература:

- 1. Технология разработки программного обеспечения: учеб. пособие / Л.Г. Гагарина, Е.В. Кокорева, Б.Д. Сидорова-Виснадул; под ред. Л.Г. Гагариной. М.: ИД 'ФОРУМ': ИНФРА-М, 2019. -- 400 с. (Высшее образование: Бакалавриат). Режим доступа: http://znanium.com/catalog/product/1011120
- 2. Управление качеством программного обеспечения: учебник / Б.В. Черников. М.: ИД 'ФОРУМ': ИНФРА-М, 2019. 240 с. (Высшее образование: Бакалавриат). Режим доступа: http://znanium.com/catalog/product/1018037
- 3. Основы построения автоматизированных информационных систем: учебник / В.А. Гвоздева, И.Ю. Лаврентьева. М.: ИД 'ФОРУМ': ИНФРА-М, 2019. ? 318 с. (Среднее профессиональное образование). Режим доступа: http://znanium.com/catalog/product/989678

7.2. Дополнительная литература:

- 1. Старолетов, С.М. Основы тестирования и верификации программного обеспечения [Электронный ресурс]: учебное пособие / С.М. Старолетов. Электрон. дан. Санкт-Петербург: Лань, 2018. 344 с. Режим доступа: https://e.lanbook.com/book/110939
- 2. Информационные системы: учебное пособие / О. Л. Голицына, Н. В. Максимов, И. И. Попов. 2-е изд. М.: ФОРУМ: ИНФРА-М, 2018. 448 с.: ил. (Высшее образование). Режим доступа: http://znanium.com/catalog/product/953245

3. Информационные технологии и системы: Учебное пособие / Е.Л. Федотова. - М.: ИД ФОРУМ: НИЦ ИНФРА-М, 2014. - 352 с.: ил. - (Высшее образование). - Режим доступа: http://znanium.com/catalog/product/429113

7.3. Интернет-ресурсы:

Scala. основной сайт сообщества - http://www.scala-lang.org/ Scala (язык программирования) - википедия http://ru.wikipedia.org/wiki/Scala_(язык_программирования) Scala-викиучебник - http://ru.wikibooks.org/wiki/Scala Первые шаги в Scala - http://www.rsdn.ru/article/scala/scala.xml Учебное пособие по Scala - http://programador.ru/scala-tu/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Программирование на языке Scala" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Компьютер. Мультимедийное презентационное оборудование.

Программа дисциплины "Программирование на языке Scala"; 03.03.03 Радиофизика; доцент, к.н. (доцент) Акчурин А.Д. , ассистент, б.с. Ильдиряков В.Р.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.03.03 "Радиофизика" и профилю подготовки Специальные радиотехнические системы .

Программа дисциплины "Программирование на языке Scala"; 03.03.03 Радиофизика; доцент, к.н. (доцент) Акчурин А.Д. , ассистент, б.с. Ильдиряков В.Р.

Автор(ы):									
Акчурин А.Д									
Ильдиряк	ов В.Р								
""_	201 _	_ г.							
Рецензен	т(ы):								
Зыков Е.Н	O								
" "	201	Г.							