МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Физика атмосферы и гидросферы Б1.В.ОД.3

	направление	подготовки:	<u>03.04.03 - Рад</u>	<u>иофизика</u>
--	-------------	-------------	-----------------------	-----------------

Профиль подготовки: Радиофизические методы по областям применения

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Гаврилов А.Г., Хуторова О.Г.

Рецензент(ы): Насыров И.А.

C	റ	Г	П	ΑC	:0	ıR	Δ	н	റ	٠
J	J	. ,		~~	\sim	_	$\overline{}$		J	

Заведующий(ая) кафедрой: Овчинников М. Н. Протокол заседания кафедры No от ""	201г
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от ""	201г
Регистрационный No 635017	

Казань 2017

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Гаврилов А.Г. Кафедра радиоэлектроники Отделение радиофизики и информационных систем , Alexander.Gavrilov@kpfu.ru ; профессор, д.н. (профессор) Хуторова О.Г. Кафедра радиоастрономии Отделение радиофизики и информационных систем , Olga.Khutorova@kpfu.ru

1. Цели освоения дисциплины

Формирование у студентов систематизированных знаний о строении и составе атмосферы, радиационные процессах и распределение солнечного тепла на земной поверхности, основных формах движения атмосферы; распространении упругих колебаний в горных породах, фильтрации жидкостей и газов в пористых средах-пластах горных пород, об эффектах фильтрационных акустических шумов, смещении и деформации горных пород. Получение знаний в области фильтрационных процессов в гетерогенных средах, с целью учёта влияния релаксационных свойств среды на распространение волновых и импульсных возмущений в них, взаимосвязи между оптимальными режимами эксплуатации нефтяных месторождений и исследованиями фильтрационных свойств пластов волновыми методами, включая специфику проведения промысловых геофизических и гидродинамических экспериментов.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.З Дисциплины (модули)" основной образовательной программы 03.04.03 Радиофизика и относится к обязательным дисциплинам. Осваивается на 1 курсе, 1 семестр.

Данная учебная дисциплина входит в раздел профессиональных дисциплин (В.2) ФГОС ВПО и ПрООП по направлению подготовки "Радиофизика", профиль подготовки: Радиофизические методы по областям применения. Ее освоение предполагает знание содержания курсов по методам математической физики, подземной гидродинамики, статистической физики и теории фильтрации.

Курс предназначен для магистрантов 1 года обучения, 1 семестр

Направление: 010800.68: Радиофизика

Магистратура "Радиофизические методы по областям применения"

М2.Б.3, Профессиональный цикл

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОПК-3 (профессиональные компетенции)	способностью к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимых для решения научно-исследовательских задач
ПК-1 (профессиональные компетенции)	способностью использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики
ПК-2 (профессиональные компетенции)	способностью самостоятельно ставить научные задачи в области физики и радиофизики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта

Шифр компетенции	Расшифровка приобретаемой компетенции
профессиональные компетенции)	способностью внедрять результаты прикладных научных исследований в перспективные приборы, устройства и системы, основанные на колебательно-волновых принципах функционирования

В результате освоения дисциплины студент:

1. должен знать:

основные временные и пространственные закономерности фундаментальных параметров атмосферы и природу физических процессов, происходящих в атмосфере и гидросфере; основы гидродинамики флюидонасыщенных пористых сред, разделы общей физики, радиофизики и электроники в области современных информационных технологий, понимать проблемы постановки и методы решения задач в области изучения фильтрационных процессов в гетерогенных средах.

2. должен уметь:

- ориентироваться в современных проблемах мониторинга и экологии атмосферы и гидросферы;
- ориентироваться в понимании современных проблем и новейших достижений физики и радиофизики в распространении волновых и импульсных возмущений в насыщенных пористых средах
- 3. должен владеть:
- теоретическими знаниями о физических процессах, определяющих термодинамический режим атмосферы и гидросферы;
- навыками выполнения практических работ по теме курса.
- навыками творческого обобщения полученных знаний, конкретного и объективного изложения своих знаний в письменной и устной форме, приобрести навыки расчетов фильтрационных параметров исследуемых пластов при проведении промысловых геофизических и гидродинамических экспериментов.
- 4. должен демонстрировать способность и готовность:
- использовать полученные теоретические знания для решения профессиональных задач.
- применить полученные знания на практике в своей дальнейшей научно-исследовательской деятельности.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	_{Поктии} Практические Лабораторные			Текущие формы контроля
N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		занятия Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	оду/			Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Основы теории фильтрации.	1	1	2	0	0	Устный опрос
	Тема 2. Стационарные и нестационарные гидродинамические методы исследования флюидонасыщенных пластов.	1	2	2	0	0	Тестирование
3.	Тема 3. Спектральная пьезометрия пласта.	1	3	2	0	0	Устный опрос
4.	Тема 4. Зондирование межскважинных интервалов пласта периодическим гидродинамическим воздействием.	1	4	2	0	2	Тестирование
5.	Тема 5. Самопрослушивание системы "пласт-скважина" методом высокочастотных фильтрационных волн давления.	1	5	2	0	2	Устный опрос
6.	Тема 6. Геофизические методы исследования скважин.	1	6	2	0	2	Презентация
7.	Тема 7. Температура и методы ее измерения.	1	7	2	0	0	Устный опрос
8.	Тема 8. Строение атмосферы.	1	8	2	0	0	Научный доклад
9.	Тема 9. Статика атмосферы.	1	9	2	0	0	Устный опрос
10.	Тема 10. Радиационные процессы в атмосфере.	1	10	2	0	0	Устный опрос
11.	Тема 11. Взаимодействие атмосферы и океана.	1	11	1	0	0	Устный опрос
12.	Тема 12. Основы динамики атмосферы.	1	12	1	0	0	Устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной ра их трудоемк (в часах) Практические занятия	аботы, ость)	Текущие формы контроля
13.	Тема 13. Виды атмосферных вариаций.	1	14	2	0	0	Научный доклад
14.	Тема 14. Современные проблемы мониторинга и экологии атмосферы. Методы исследования атмосферы.	1	13	2	0	7	Контрольная работа
4.2 C	Тема . Итоговая форма контроля	1 њ		0	0	0	Экзамен
Тема	µтଭୁତновы теории фил и онное занятие (2 часа	ьтраци	и.	26	0	13	

Основы теории фильтрации. Уравнение пьезопроводности. Фильтрация в пористых средах. Пористость. Скорость фильтрации. Закон Дарси. Проницаемость. Формулы общего закона фильтрации. Стационарная и нестационарная фильтрация. Гидропроводность и пьезопроводность пласта. Приведенный радиус скважины. Уравнение линейной и плоскорадиальной фильтрации. Механическая модель пласта.

Тема 2. Стационарные и нестационарные гидродинамические методы исследования флюидонасыщенных пластов.

лекционное занятие (2 часа(ов)):

Конструкция скважин. Стационарные и нестационарные методы исследования пластов. Переходные процессы. Методы КПД и КВД. Аналитические и асимптотические соотношения распространения возмущений при пуске скважины при постоянном дебите и постоянном забойном давлении. Метод фильтрационных волн давления. Графические и аналитические методы определения ФПП.

Тема 3. Спектральная пьезометрия пласта.

лекционное занятие (2 часа(ов)):

Спектральная пьезометрия пласта. Распространение периодических возмущений, импульса, скачка в релаксирующих системах. Релаксационная фильтрация. Зондирование призабойной зоны скважины высокочастотными ФВД. Период, фаза, амплитуда фильтрационных волн давления. Асимптотические решения.

Тема 4. Зондирование межскважинных интервалов пласта периодическим гидродинамическим воздействием.

лекционное занятие (2 часа(ов)):

Зондирование межскважинных интервалов периодическим гидродинамическим воздействием. Определение полей пьезопроводности и гидропроводности методом ФВД. Построение постоянно действующей гидродинамической модели пласта.

лабораторная работа (2 часа(ов)):

Программно - аппаратный комплекс для межскважинного прослушивания пласта. Программы обработки промыслового материала получения НИМ и расчета фильтрационных параметров пласта.

Тема 5. Самопрослушивание системы "пласт-скважина" методом высокочастотных фильтрационных волн давления.

лекционное занятие (2 часа(ов)):

Метод зондирования системы "пласт - скважина", с помощью ФВД на ?высоких? частотах - самостоятельная область промысловых гидродинамических исследований. Аппаратная часть комплекса. Программное обеспечение комплекса. Методика высокочастотных фильтрационных волн давления, как инструмент оценки качества обработки призабойной зоны скважины с целью повышения её нефтеотдачи.

лабораторная работа (2 часа(ов)):

Программно - аппаратный комплекс для самопрослушивания системы "пласт-скважина" "MOBIL-1". Программы обработки промыслового материала. Получение НИМ. Расчет фильтрационных параметров призабойной зоны скважины.

Тема 6. Геофизические методы исследования скважин.

лекционное занятие (2 часа(ов)):

Геофизические методы исследования скважин. Электрические каротажи. Ядерно-геофизические каротажи. Нейтронный каротаж. Акустический каротаж. Термокаротаж. Гамма-каротаж. Газовый каротаж. Кавернометрия.

лабораторная работа (2 часа(ов)):

Презентации - доклады магистров на темы: Электрические каротажи. Ядерно-геофизические каротажи. Нейтронный каротаж. Акустический каротаж. Термокаротаж. Гамма-каротаж. Газовый каротаж. Кавернометрия.

Тема 7. Температура и методы ее измерения.

лекционное занятие (2 часа(ов)):

Температура и методы ее измерения. Термочастотные, термомагнитные, термошумовые, термоэлектрические и терморезистивные методы. Термочувствительные элементы. Основные функциональные узлы и принципиальные схемы дистанционных измерителей температуры

Тема 8. Строение атмосферы.

лекционное занятие (2 часа(ов)):

Современные проблемы мониторинга и экологии атмосферы. Строение атмосферы. Некоторые данные кинетической теории газов. Состав атмосферы, атмосферный озон, естественный и антропогенный аэрозоль, газообразное загрязнение атмосферы.

Тема 9. Статика атмосферы.

лекционное занятие (2 часа(ов)):

Основные законы статики атмосферы. Адиабатические процессы в атмосфере, термодинамическая устойчивость, запас энергии неустойчивости

Тема 10. Радиационные процессы в атмосфере.

лекционное занятие (2 часа(ов)):

Радиационные процессы в атмосфере, солнечная энергия, законы излучения, распределение солнечного тепла на земной поверхности, основы теории рассеяния света в атмосфере, приближенная теория переноса радиации в атмосфере

Тема 11. Взаимодействие атмосферы и океана.

лекционное занятие (1 часа(ов)):

Взаимодействие атмосферы и океана, температура атмосферы и ее вертикальное распределение, основные формы движения в атмосфере

Тема 12. Основы динамики атмосферы.

лекционное занятие (1 часа(ов)):

илы, действующие в атмосфере, основные формы движения атмосферы, геострофический и градиентный ветер

Тема 13. Виды атмосферных вариаций.

лекционное занятие (2 часа(ов)):

Ветер и кинематика воздушных течений, скорость ветра, вертикальное распределение средней скорости ветра, вертикальные движения, годовой и суточный ход

Тема 14. Современные проблемы мониторинга и экологии атмосферы. Методы исследования атмосферы.

лекционное занятие (2 часа(ов)):

Строение атмосферы, некоторые данные кинетической теории газов, газовый состав атмосферы, ионизация атмосферы

лабораторная работа (7 часа(ов)):

Дистанционное зондирование атмосферы. Основы работы спутниковых навигационных систем. Орбиты спутников ГЛОНАСС и GPS. Расчет радиотрасс. Оценка общего электронного содержания ионосферы.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Основы теории фильтрации.	1		подготовка к устному опросу	5	устный опрос
	Тема 2. Стационарные и нестационарные гидродинамические методы исследования флюидонасыщенных пластов.	1	2	подготовка к тестированию	5	тестирование
3.	Тема 3. Спектральная пьезометрия пласта.	1	3	подготовка к устному опросу	5	устный опрос
4.	Тема 4. Зондирование межскважинных интервалов пласта периодическим гидродинамическим воздействием.	1	4	подготовка к тестированию	5	тестирование
5.	Тема 5. Самопрослушивание системы "пласт-скважина" методом высокочастотных фильтрационных волн давления.	1	ו	подготовка к устному опросу	4	устный опрос
ın	Тема 6. Геофизические методы исследования скважин.	1	ı n	подготовка к презентации	5	презентация
7.	Тема 7. Температура и методы ее измерения.	1	/	подготовка к устному опросу	4	устный опрос
8.	Тема 8. Строение атмосферы.	1	8	подготовка к научному докладу	4	научный доклад
9.	Тема 9. Статика атмосферы.	1	9	подготовка к устному опросу	5	устный опрос
	Тема 10. Радиационные процессы в атмосфере.	1	1 1()	подготовка к устному опросу	5	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
11.	Тема 11. Взаимодействие атмосферы и океана.	1	1 1	подготовка к устному опросу	5	устный опрос
12.	Тема 12. Основы динамики атмосферы.	1	/	подготовка к устному опросу	5	устный опрос
13.	Тема 13. Виды атмосферных вариаций.	1		подготовка к научному докладу	5	научный доклад
14.	Тема 14. Современные проблемы мониторинга и экологии атмосферы. Методы исследования атмосферы.		13	подготовка к контрольной работе		контрольная работа
	Итого				69	

5. Образовательные технологии, включая интерактивные формы обучения

Курс лекций читается с применением мультимедийных технологий.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основы теории фильтрации.

устный опрос, примерные вопросы:

Основы теории фильтрации. Уравнение пьезопроводности. Фильтрация в пористых средах. Пористость. Скорость фильтрации. Закон Дарси. Проницаемость. Формулы общего закона фильтрации. Стационарная и нестационарная фильтрация. Гидропроводность и пьезопроводность пласта. Приведенный радиус скважины. Уравнение линейной и плоскорадиальной фильтрации. Механическая модель пласта.

Тема 2. Стационарные и нестационарные гидродинамические методы исследования флюидонасыщенных пластов.

тестирование, примерные вопросы:

Конструкция скважин. Стационарные и нестационарные методы исследования пластов. Переходные процессы. Методы КПД и КВД. Аналитические и асимптотические соотношения распространения возмущений при пуске скважины при постоянном дебите и постоянном забойном давлении. Метод фильтрационных волн давления. Графические и аналитические методы определения ФПП.

Тема 3. Спектральная пьезометрия пласта.

устный опрос, примерные вопросы:

Спектральная пьезометрия пласта. Распространение периодических возмущений, импульса, скачка в релаксирующих системах. Релаксационная фильтрация. Зондирование призабойной зоны скважины высокочастотными ФВД. Период, фаза, амплитуда фильтрационных волн давления. Асимптотические решения.

Тема 4. Зондирование межскважинных интервалов пласта периодическим гидродинамическим воздействием.

тестирование, примерные вопросы:

Зондирование межскважинных интервалов периодическим гидродинамическим воздействием. Определение полей пьезопроводности и гидропроводности методом ФВД. Построение постоянно действующей гидродинамической модели пласта.

Тема 5. Самопрослушивание системы "пласт-скважина" методом высокочастотных фильтрационных волн давления.

устный опрос, примерные вопросы:

Метод зондирования системы "пласт - скважина", с помощью ФВД на ?высоких? частотах - самостоятельная область промысловых гидродинамических исследований. Аппаратная часть комплекса. Программное обеспечение комплекса. Методика высокочастотных фильтрационных волн давления, как инструмент оценки качества обработки призабойной зоны скважины с целью повышения её нефтеотдачи.

Тема 6. Геофизические методы исследования скважин.

презентация, примерные вопросы:

Тема 7. Температура и методы ее измерения.

устный опрос, примерные вопросы:

Температура и методы ее измерения. Термочастотные, термомагнитные, термошумовые, термоэлектрические и терморезистивные методы. Термочувствительные элементы. Основные функциональные узлы и принципиальные схемы дистанционных измерителей температуры

Тема 8. Строение атмосферы.

научный доклад, примерные вопросы:

Строение и состав атмосферы. Главные газы. Малые газы. Взвешенные частицы.

Стратификация атмосферы.

Тема 9. Статика атмосферы.

устный опрос, примерные вопросы:

Основные законы статики атмосферы. Адиабатические процессы в атмосфере, термодинамическая устойчивость, запас энергии неустойчивости

Тема 10. Радиационные процессы в атмосфере.

устный опрос, примерные вопросы:

Физика Солнца. Спектры излучения Земли и Солнца. Солнечная активность. Радиационный баланс атмосферы. Атмосферная радиация.

Тема 11. Взаимодействие атмосферы и океана.

устный опрос, примерные вопросы:

Взаимодействие атмосферы и океана, температура атмосферы и ее вертикальное распределение, основные формы движения в атмосфере

Тема 12. Основы динамики атмосферы.

устный опрос, примерные вопросы:

Уравнения гидротермодинамики атмосферы. Общая циркуляция атмосферы, методы исследования.

Тема 13. Виды атмосферных вариаций.

научный доклад, примерные вопросы:

Масштабы атмосферных процессов. Турбулентность и волны в атмосфере. Климат и его изменчивость.

Тема 14. Современные проблемы мониторинга и экологии атмосферы. Методы исследования атмосферы.

контрольная работа, примерные вопросы:

Вертикальное и наклонное радиозондирование ионосферы. Лидарные исследования Радиометрические исследования Акустическое зондирование пограничного слоя Радиозондовые измерения Спутниковые исследования атмосферы

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

- 1. Геофизические методы исследования скважин. Электрический каротаж. Основные понятия и классификация методов.
- 2. Электромагнитный каротаж. Каротаж самопроизвольной поляризации. Акустический каротаж.
- 3. Стационарная фильтрация. Установившееся давление в пласте. Метод установившихся притоков.
- 4. Условия проведения промыслового эксперимента по гидропрослушиванию пласта методом ФВД.
- 5. Механическая модель флюидонасыщенного пласта.
- 6. Основные характеристики пласта и скважины.

ВОПРОСЫ К ЭКЗАМЕНУ

- 1.1. Строение атмосферы
- 2. Состав атмосферы
- 3. Глобальное загрязнение
- 4. Общие сведения об озоне
- 5. Радиационные процессы в атмосфере
- 6. Спектр Солнца
- 7. Альбедо земли
- 8. Радиационный баланс
- 9. Вертикальное распределение температуры в нижней тропосфере
- 10. Ветер и кинематика воздушных течений
- 11. Силы, действующие в атмосфере
- 12. Общее уравнение движения атмосферы
- 13. Атмосферные гравитационные волны
- 14. Газовые законы и уравнения непрерывности
- 15. Основные характеристики верхней атмосферы
- 16. Магнитное поле земли
- 17. Свойства плазмы в магнитном поле
- 18. Измерение поглощения радиоволн
- 19. Гидростатическое уравнение
- 20. Движение заряженных частиц в магнитном поле
- 21. Экваториальная ионосфера
- 22. Геомагнитное поле вблизи земли
- 23. Солнечные вспышки
- 24. Зимняя аномалия поглощения радиоволн
- 25. Прогнозы распространения радиоволн
- 26. Законы сохранения в гидродинамике. Уравнение Эйлера.
- 27. Явление фильтрации. Модели пористых сред. Пористость. Скорость фильтрации.
- 28. Закон Дарси. Проницаемость. Уравнение неразрывности. Формулы общего закона фильтрации.
- 29. Классическая модель (КМ) фильтрации. Постановка задачи и решение диф. уравнения для давления применительно к методу фильтрационных волн давления (ФВД).
- 30. Гидродинамические методы исследования флюидонасыщенных пластов и скважин.
- 31. Стационарные и нестационарные ГДИС.
- 32. Начальный информационный массив при самопрослушивании методом ФВД (графическое представление).

- 33. Начальный информационный массив при гидропрослушивании методом ФВД (графическое представление).
- 34. Математическая обработка результатов исследования межскважинных интервалов пласта (Фурье-анализ).
- 35. Нестационарная фильтрация. Гидропроводность, пьезопроводность пласта и приведенный радиус скважины.
- 36. Спектральная пьезометрия пласта. Распространение периодических возмущений, импульса, скачка в релаксирующих системах.
- 37. Период, фаза, амплитуда фильтрационных волн давления. Асимптотические решения и их погрешности.
- 38. Механическая модель флюидонасыщенного пласта.
- 39. Основные характеристики пласта и скважины.
- 40. Определение типа модели фильтрации. Определение ФПП по данным самопрослушивания.
- 41. Условия проведения промыслового эксперимента по самопрослушиванию пласта методом ФВД.
- 42. Условия проведения промыслового эксперимента по гидропрослушиванию пласта методом ФВД.
- 43. Геофизические методы исследования скважин. Электрический каротаж. Основные понятия и классификация методов.
- 44. Электромагнитный каротаж. Каротаж самопроизвольной поляризации. Акустический каротаж.

7.1. Основная литература:

- 1. Григорьева И.Ю. Основы природопользования: Учеб. пособие. М.: Инфра-М, 2013. 336 с. //http://znanium.com/bookread.php?book=341082
- 2.Овчинников М.Н., Куштанова Г.Г., Гаврилов А.Г. Средства контроля гидродинамических потоков в скважинных условиях и расчеты фильтрационных параметров пластов. Учебное пособие. Казань: КФУ. -2012.130с.
- http://www.kpfu.ru/docs/F1805167370/sredstva_kontrolya_gd_potokov_32.pdf
- 3. Куштанова, Г.Г. Подземная гидромеханика. (уч.-метод. пособие) [электронный ресурс] / Г.Г. Куштанова , М.Н.Овчинников./ Казань: Изд-во Казан.(Приволж.) федер. ун-та, 2010. 67 с. //http://kpfu.ru/main_page?p_sub=8350

7.2. Дополнительная литература:

- 1. Науки о Земле: Учебное пособие / Г.К. Климов, А.И. Климова. М.: ИНФРА-М, 2012. 390 с.: 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-16-005148-2, 500 экз. http://znanium.com/catalog.php?bookinfo=237608
- 2. Циркуляция мезосферы нижней термосферы средних широт / А. Н. Фахрутдинова ; Казан. гос. ун-т .? Казань : Казан. гос. ун-т, 2004 .? 166 с. : ил .? Библиогр.: с. 143-164 .? ISBN 5-98180-084-4, 100.

http://old.kpfu.ru/zgate/cgi/zgate?present+23228+default+3+1+F+1.2.840.10003.5.102+rus

7.3. Интернет-ресурсы:

Гаврилов А.Г., Овчинников М.Н., Одиванов В.Л. Радиоэлектронные системы контроля параметров флюидонасыщенных пластов Учебно-методическое пособие. - Казань, КФУ. - 2010 г. - 92 стр. - http://www.kpfu.ru/docs/F2064991677/gavrilov_MNO_odivanov.pdf

Куштанова Г.Г. Волновые и импульсные методы исследования пластов и скважин.

Учебно-методическое пособие к курсу лекций. Казань: КФУ - 2010, 59 с. -

http://www.kpfu.ru/docs/F129637752/kushtan_voln_i_impulsn.pdf

Манометры для испытания скважин - http://www.gosco.ru/page29.html

Овчинников М.Н., Куштанова Г.Г., Гаврилов А.Г. Средства контроля гидродинамических потоков в скважинных условиях и расчеты фильтрационных параметров пластов. Учебное пособие. Казань: КФУ. - 2012. -

http://www.kpfu.ru/docs/F1805167370/sredstva kontrolya gd potokov 32.pdf

Система распределенной регистрации данных - http://odivanov.narod.ru/Systreg.html

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Физика атмосферы и гидросферы" предполагает использование следующего материально-технического обеспечения:

Переносное демонстрационное оборудование (мультимедийные проектор, ноутбук).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.04.03 "Радиофизика" и магистерской программе Радиофизические методы по областям применения.

Автор(ы):			
Хуторова О.Г.			
Гаврилов А.Г.			
""	_201	г.	
Рецензент(ы):			
Насыров И.А.			
" <u>"</u>	_ 201	г.	