МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

УТВЕРЖДАЮ

Проректор					
по образовательной деятельности КФ					
Проф. Таюрс	кий Д.А.				
" "	20 г.				

Программа дисциплины

Статистика случайных процессов Б1.В.ДВ.8

Направление подготовки: 01.03.02 - Прикладная математика и информатика
Профиль подготовки: Теория вероятностей и математическая статистика
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Кареев И.А.
Рецензент(ы):
-
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Турилова Е. А. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2015

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) ассистент, к.н. Кареев И.А. кафедра математической статистики отделение прикладной математики и информатики , IAKareev@kpfu.ru

1. Цели освоения дисциплины

Целью курса является систематическое изучение основных понятий и методов статистики случайных процессов, которые используются в качестве математических моделей широкого круга явлений в технике, экономике, физике и других разделах естествознания. Особое внимание уделяется процедурам оценивания параметров и прогноза для стационарных и сводящихся к стационарным временных рядов.

Курс "Статистика случайных процессов" существенно опирается на многие разделы курсов "Теория вероятностей и математическая статистика", "Математический анализ", "Алгебра и геометрия", "Математические основы стохастики", "Функциональный анализ" и "Теория случайных процессов".

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.8 Дисциплины (модули)" основной образовательной программы 01.03.02 Прикладная математика и информатика и относится к дисциплинам по выбору. Осваивается на 4 курсе, 7 семестр.

Дисциплина "Статистика случайных процессов" входит в базовую часть математического и естественнонаучного цикла подготовки бакалавра по направлению "Прикладная математика и информатика".

Логическая и содержательно - методическая взаимосвязь с другими дисциплинами и частями ООП выражается в следующем.

Курс "Статистика случайных процессов" существенно опирается на многие разделы курсов "Теория вероятностей и математическая статистика", "Математический анализ", "Алгебра и геометрия", "Математические основы стохастики", "Функциональный анализ" и "Теория случайных процессов".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1 (профессиональные компетенции)	способность демонстрации общенаучных базовых знаний естественных наук, математики и информатики, понимание основных фактов, концепций, принципов теорий, связанных с прикладной математикой и информатикой
ПК-2 (профессиональные компетенции)	способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии
ПК-8 (профессиональные компетенции)	способность формировать суждения о значении и последствиях своей профессиональной деятельности с учетом социальных, профессиональных и этических позиций
ПК-9 (профессиональные компетенции)	способность приобретать и использовать организационно-управленческие навыки в профессиональной и социальной деятельности

В результате освоения дисциплины студент:

1. должен знать:

- основные понятия и методы элементарной математики, математического анализа; теории вероятностей и математической статистики, алгебры и геометрии; математических основ стохастики; функционального анализа; теории случайных процессов.

2. должен уметь:

- вычислять вероятности элементарных событий;
- вычислять условные вероятности;
- находить основные характеристики случайных величин;
- использовать основные алгебраические тождества для преобразования алгебраических выражений;
- решать линейные и квадратичные уравнения и неравенства;
- находить интегралы и производные;
- доказывать математические утверждения;

3. должен владеть:

- методами теории вероятностей и математической статистики;
- теоретическими знаниями, связанными с классификацией случайных процессов и методами их исследования;
- основными принципами построения стохастических моделей при исследовании широкого круга задач физики, техники и экономики.
- 4. должен демонстрировать способность и готовность:

В результате освоения дисциплины обучающийся должен:

- понимать основные принципы построения и уточнения стохастических моделей при исследовании широкого круга задач физики, техники и экономики;
- обладать теоретическими знаниями, связанными с методами оценивания параметров, интерполяции, прогнозу и фильтрации случайных процессов;
- ориентироваться в современных математических методах статистики случайных процессов.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	, Лабораторные работы	•
	Тема 1. Модели авторегрессии и скользящего суммирования	7	1-2	0	0	5	
2.	Тема 2. Оценивание ковариационной функции	7	2	0	0	4	
	Тема 3. Статистические свойства периодограммы	7	3	0	0	3	
4.	Тема 4. Дискретное преобразование Фурье	7	3-4	0	0	6	
5.	Тема 5. Оценивание спектральной плотности	7	4-7	0	0	6	
6.	Тема 6. Регулярные и сингулярные последовательности	7	7-8	0	0	5	
7.	Тема 7. Экстраполяция	7	8-9	0	0	5	
8.	Тема 8. Интерполяция	7	9	0	0	5	
9.	Тема 9. Фильтры	7	10-12	0	0	4	
10.	Тема 10. Линейные модели временных рядов	7	13-15	0	0	6	
11.	Тема 11. Прогнозирование временных рядов	7	15-18	0	0	5	
	Тема . Итоговая форма контроля	7		0	0	0	экзамен
	Итого			0	0	54	

4.2 Содержание дисциплины

Тема 1. Модели авторегрессии и скользящего суммирования *пабораторная работа (5 часа(ов)):*

Спектральное представление последовательности второго порядка. Модели авторегрессии и скользящего суммирования. Линейные фильтры. Рациональные спектральные плотности. Представимость последовательности, имеющей спектральную плотность, моделью скользящего суммирования.

Тема 2. Оценивание ковариационной функции лабораторная работа (4 часа(ов)):

Оценивание ковариационной функции. Необходимое и достаточное условие состоятельности оценки в нормальном случае.

Тема 3. Статистические свойства периодограммы *лабораторная работа (3 часа(ов)):*

Оценивание спектральной функции плотности, статистические свойства периодограммы и типы окон.

Тема 4. Дискретное преобразование Фурье

лабораторная работа (6 часа(ов)):

Дискретное преобразование Фурье. Алгоритмы быстрого преобразования Фурье.

Тема 5. Оценивание спектральной плотности

лабораторная работа (6 часа(ов)):

Состоятельные оценки спектральной плотности. Оценивание автокорреляции и взаимной корреляции. Коррелограммный метод оценки спектральной плотности. Периодограммные оценки спектральной плотности.

Тема 6. Регулярные и сингулярные последовательности

лабораторная работа (5 часа(ов)):

Регулярные и сингулярные последовательности. Разложение Вольда. Обновляющие последовательности и модель скользящего среднего.

Тема 7. Экстраполяция

лабораторная работа (5 часа(ов)):

Экстраполяция и примеры экстраполяции для сингулярных и регулярных случайных последовательностей.

Тема 8. Интерполяция

лабораторная работа (5 часа(ов)):

Интерполяция. Теорема Колмогорова. Примеры.

Тема 9. Фильтры

лабораторная работа (4 часа(ов)):

Фильтрация по всей наблюдаемой последовательности. Выделение сигнала из смеси с шумом. Общая задача фильтрации. Фильтр Калмана - Бьюси.

Тема 10. Линейные модели временных рядов

лабораторная работа (6 часа(ов)):

Линейные модели временных рядов. Процессы авторегрессии. Процессы скользящего среднего. Смешанные процессы. Примеры. Линейные нестационарные модели. Идентификация модели. Оценивание параметров.

Тема 11. Прогнозирование временных рядов

лабораторная работа (5 часа(ов)):

Прогнозирование. Вероятностные пределы прогнозов. Практика построения, подгонки модели и прогноза по выборочным данным.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
' .	Тема 1. Модели авторегрессии и скользящего суммирования	7	1-2	изучение дополнительной литературы по темам: спектральные представления процессов АР и СС и их спект	6	реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы	Трудоемкость (в часах)	Формы контроля самостоятельной
	дисциплины		Семестра	студентов	(в часах)	работы
2.	Тема 2. Оценивание ковариационной функции	7	2	изучение дополнительной литературы по темам: оценивание автоковариационфункции стационарных проц	3 ной	реферат
3.	Тема 3. Статистические свойства периодограммы	7	3	изучение дополнительной литературы по темам: статистические методы оценивания спектральной функции п	3	реферат
4.	Тема 4. Дискретное преобразование Фурье	7	3-4	подготовка к проверочной работе по темам: преобразование Фурье и алгоритмы его реализации.	6	контрольная работа
5.	Тема 5. Оценивание спектральной плотности	7	4-7	изучение дополнительной литературы по темам: коррелограмный и периодограмный способы оценивания спек	0	реферат
6.	Тема 6. Регулярные и сингулярные последовательности	7	7-8	изучение дополнительной литературы по темам: разложение процессов на регулярные и сингулярные части.	6	реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
7.	Тема 7. Экстраполяция	7		изучение дополнительной литературы по темам: постановка и решение задачи экстраполяции для случайных	6	реферат
8.	Тема 8. Интерполяция	7	9	изучение дополнительной литературы по темам: постановка и решение задачи интерполяции для случайных		реферат
9.	Тема 9. Фильтры	7	10-12	изучение дополнительной литературы по темам: фильтрация и выделение сигнала из смеси с шумом.	6	реферат
10.	Тема 10. Линейные модели временных рядов	7		изучение дополнительной литературы по темам: нестационарные линейные модели временных рядов и их иде		реферат
11.	Тема 11. Прогнозирование временных рядов	7	15-18	изучение дополнительной литературы по темам: прогнозирование временных рядов АР и СС, прогнозы по ме	6	контрольная работа
	Итого				54	

5. Образовательные технологии, включая интерактивные формы обучения

Чтение лекций и лабораторные работы по данной дисциплине проводятся традиционным способом.

Студентам предоставляется возможность для самоподготовки и подготовки к экзамену использовать электронный вариант конспекта лекций, подготовленный преподавателем в соответствие с планом лекций.

При работе используется диалоговая форма ведения лекций и практических занятий с постановкой и решением проблемных задач, обсуждением дискуссионных моментов и т.д.

При проведении проверочных работ студентам предлагается ответить на некоторые теоретические вопросы по курсу лекций и решить задачи, содержащие элементы научных исследований, которые могут потребовать углубленной самостоятельной проработки теоретического материала.

При организации внеаудиторной самостоятельной работы по данной дисциплине преподавателю рекомендуется использовать следующие ее формы:

- решение студентом самостоятельных задач обычной сложности, направленных на закрепление знаний и умений;
- выполнение индивидуальных заданий повышенной сложности, направленных на развитие у студентов научного мышления и инициативы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Модели авторегрессии и скользящего суммирования

реферат, примерные темы:

Изложение определения и основных свойств случайных последовательностей авторегрессии и скользящего среднего. Описание линейных фильтров и их связи с последовательностями скользящего среднего.

Тема 2. Оценивание ковариационной функции

реферат, примерные темы:

Изложение описания оценок ковариационной функции, приведение необходимых и достаточных условий её состоятельности для нормального случая.

Тема 3. Статистические свойства периодограммы

реферат, примерные темы:

Изложение понятий периодограммы и окон, различные формы их записи.

Тема 4. Дискретное преобразование Фурье

контрольная работа, примерные вопросы:

Решение теоретических задач по прошедшим темам и краткое изложение дискретного преобразования Фурье.

Тема 5. Оценивание спектральной плотности

реферат, примерные темы:

Изложение способа оценивания спектральной функции плотности с помощью периодограммы. Изложение способов оценивания автокорреляции и взаимной корреляции.

Тема 6. Регулярные и сингулярные последовательности

реферат, примерные темы:

Изложение определений регулярной и сингулярной последовательностей, изложение разложения Вольда последовательностей на регулярную и сингулярную компоненты.

Тема 7. Экстраполяция

реферат, примерные темы:

Изложение определения задачи экстраполяции и основных результатов, касающихся её оценок. Приведения примера экстраполяции для регулярных и сингулярных последовательностей.

Тема 8. Интерполяция

реферат, примерные темы:

Изложение определения задачи интерполяции и теоремы Колмогорова.

Тема 9. Фильтры

реферат, примерные темы:

Изложение определения задачи фильтрации. Изложение решения для частного случая - задачи выделения сигнала из смеси с шумом. Рассмотрение фильтра Калмана-Бьюси.

Тема 10. Линейные модели временных рядов

реферат, примерные темы:

Изложения описания линейных моделей временных рядов, задачи идентификации модели и оценивания параметров.

Тема 11. Прогнозирование временных рядов

контрольная работа, примерные вопросы:

Решение теоретических задач по пройденным темам и краткое изложение основных результатов, касающихся прогнозирования временных рядов, подгонки модели и прогнозирования по выборочным данным.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Всего по текущей работе студент может набрать 50 баллов, в том числе:

контрольные работы - всего 50 баллов.

Студент допускается к экзамену, если он набрал по текущей работе не менее 28 баллов. Минимальное количество баллов по каждому из видов текущей работы составляет половину от максимального.

Вопросы и задания к экзамену:

- 1. Критерии состоятельности оценки ковариационной функции стационарного случайного процесса в гауссовском случае.
- 2. Статистические свойства периодограммы.
- 3. Состоятельные оценки спектральной плотности стационарной последовательности.
- 4. Регулярные и сингулярные последовательности. Разложение Вольда.
- 5. Стационарные последовательности. Экстраполяция (прогноз).
- 6. Линейные фильтры. Следствия спектральной теоремы. Спектральные плотности основных моделей.
- 7. Белый шум. АР-, СС-, АРСС-последовательности.
- 8. Теорема о представлении последовательности, имеющей спектральную плотность, в виде СС-последовательности.
- 9. Стационарные последовательности. Общая задача фильтрации.
- 10. Оценивание ковариационной функции стационарного процесса второго порядка. Несмещенность, состоятельность.
- 11. Построить оптимальную линейную оценку для задачи пропущенного наблюдения в стационарной последовательности.
- 12. Построить оптимальный линейный прогноз стационарной последовательности при известной спектральной плотности и найти его ошибку.
- 13. Решить задачу представления ввиде АР обратимой последовательности СС.
- 14. Найти связь между параметрами последовательности СС и значениями её ковариационной функцией.
- 15. Найти связь между параметрами последовательности АР и значениями её ковариационной функцией.

7.1. Основная литература:

1. Булинский А.В., Ширяев А.Н. Теория случайных процессов. - М.:Физматлит, 2005. - 400 с. ЭБС "Лань": http://e.lanbook.com/view/book/59319/

- 2. Бородин А.Н. Случайные процессы. СПб.: "Лань", 2013. 640 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/12935/
- 3. Хрущева И.В., Щербаков В.И., Леванова Д.С. Основы математической статистики и теории случайных процессов. СПб.: "Лань", 2009. 336 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/426/
- 4. Коралов Л.Б., Синай Я.Г. Теория вероятностей и случайные процессы. М.: МЦНМО, 2013. 408 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/56404/
- 5. Миллер Б.М., Панков А.Р. Теория случайных процессов в примерах и задачах. М.: Физматлит, 2007. 320 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/48168/

7.2. Дополнительная литература:

- 1. Шихеева В.В. Теория случайных процессов: марковские цепи. М.: МИСиС, 2013. 70 с. ЭБС "Лань": http://e.lanbook.com/view/book/47483/
- 2. Кельберт М.Я., Сухов Ю.М. Вероятность и статистика в примерах и задачах. Т.2: Марковские цепи как отправная точка теории случайных процессов и их приложения. М.: МЦНМО, 2010. 560 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/9354/
- 3. Соколов Г.А. Теория случайных процессов для экономистов. М.: Физматлит, 2010. 208 с.
- ЭБС "Лань": http://e.lanbook.com/view/book/59535/
- 4. Свешников А.А. Прикладные методы теории марковских процессов.- СПб.: Лань, 2007. 192 с.
- ЭБС "Лань": http://e.lanbook.com/books/element.php?pl1_id=590
- 5. Свешников А.А. Прикладные методы теории случайных функций.- СПб.: Лань, 2011. 464с.
- ЭБС "Лань": http://e.lanbook.com/books/element.php?pl1_id=656

7.3. Интернет-ресурсы:

контрольная работа -

http://www.coolreferat.com/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B2%D1%80 курс лекций - http://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf учебник -

http://baguzin.ru/wp/wp-content/uploads/2013/09/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B учебное пособие - http://www.bestreferat.ru/referat-208334.html электронный учебник - http://www.statsoft.ru/home/textbook/modules/sttimser.html

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Статистика случайных процессов" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

занятия проводятся как в обычной аудитории, так и в компьютерном классе

Программа дисциплины "Статистика случайных процессов"; 01.03.02 Прикладная математика и информатика; ассистент, к.н. Кареев И.А.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.02 "Прикладная математика и информатика" и профилю подготовки Теория вероятностей и математическая статистика .

Программа дисциплины "Статистика случайных процессов"; 01.03.02 Прикладная математика и информатика; ассистент, к.н. Кареев И.А.

Автор(ы):	
Кареев И.А	
"	_ 201 г.
Рецензент(ы):	
" "	_ 201 г.