МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт геологии и нефтегазовых технологий

подписано электронно-цифровой подписью

Программа дисциплины

<u> Алгоритмы и технологии обработки сейсмических данных 1</u> Б1.В.ДВ.4

направление подготов	зки: <u>05.04.01 -</u>	<u> 1 еология</u>			
Профиль подготовки:	Современные	геофизические	технологии	поисков и	разведки

месторождений углеводородов

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Степанов А.В. Рецензент(ы): Борисов А.С.

СОГЛАСОВАНО:

OOI TIAOOBAITO:
Заведующий(ая) кафедрой: Нургалиев Д. К.
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института геологии и нефтегазовых технологий:
Протокол заседания УМК No от "" 201г
Регистрационный No 324916
Казань
2016

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Степанов А.В. кафедра геофизики и геоинформационных технологий Институт геологии и нефтегазовых технологий , Andrey.Stepanov@kpfu.ru

1. Цели освоения дисциплины

Обучить студентов технологии цифровой обработки сейсмической информации в объёме графа детальной обработки, проводимом на стационарном региональном вычислительном комплексе (мега-ВЦ).

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.4 Дисциплины (модули)" основной образовательной программы 05.04.01 Геология и относится к дисциплинам по выбору. Осваивается на 1, 2 курсах, 2, 3 семестры.

Для изучения дисциплины "Алгоритмы и технологии обработки сейсмических данных 1" необходимо освоить курсы математики, информатики, теории поля, петрофизики, сейсморазведки в объеме математического и профессионального циклов бакалавриата и "Алгоритмы и технологии обработки сейсмических данных" в магистратуре.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-3 (общекультурные компетенции)	готовностью к саморазвитию, самореализации, использованию творческого потенциала
ОПК-4 (профессиональные компетенции)	способностью профессионально выбирать и творчески использовать современное научное и техническое оборудование для решения научных и практических задач
ПК-6 (профессиональные компетенции)	способностью использовать современные методы обработки и интерпретации комплексной информации для решения производственных задач
ПК-7 (профессиональные компетенции)	способностью самостоятельно составлять и представлять проекты научно-исследовательских и научно-производственных работ

В результате освоения дисциплины студент:

1. должен знать:

обладать теоретическими знаниями об основных алгоритмах цифровой обработки сейсмической информации и требованиях, которым должны удовлетворять цифро-вые сейсмозаписи на входе процедуры;

организацию системы компьютерной обработки сейсмической информации.

математические модели сейсмозаписей,

цель и задачи стандартного графа цифровой обработки сейсмоинформации, назначение основных процедур обработки.

ориентироваться в выборе основных параметров процедур обработки.

2. должен уметь:

применять математические методы, относящиеся ко всем разделам курса, при ре-шении профессиональных задач.

составлять задания в системе цифровой обработки сейсмической информации.

3. должен владеть:

технологией выполнения ряда процедур графа обработки, которые изучаются в данном курсе.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины зачет во 2 семестре; экзамен в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Построение скоростной модели среды по результатам обработки МОВ, полученных по методике многократных перекрытий.	2		2	0	4	отчет
2.	Тема 2. Введение в сейсмическую миграцию.	2		2	0	4	отчет
3.	Тема 3. Миграция в области времён.	2		2	0	8	контрольная работа
4.	Тема 4. Спектральные методы миграции.	2		2	0	6	отчет
5.	Тема 5. Прямое и обратное преобразование Радона	3		4	0	10	контрольная работа

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	-
6	Тема 6. Подавление регулярного шума на сейсмозаписях с помощью многоканальных процедур	3		4	0	8	отчет
	Тема . Итоговая форма контроля	2		0	0	0	зачет
	Тема . Итоговая форма контроля	3		0	0	0	экзамен
	Итого			16	0	40	

4.2 Содержание дисциплины

Тема 1. Построение скоростной модели среды по результатам обработки МОВ, полученных по методике многократных перекрытий.

лекционное занятие (2 часа(ов)):

Процесс подготовки исходных данных. Способ последовательных аппроксимаций. Итеративный способ определения скоростной модели среды

лабораторная работа (4 часа(ов)):

Подготовка скоростной модели среды для выполнения процедуры миграции.

Тема 2. Введение в сейсмическую миграцию.

лекционное занятие (2 часа(ов)):

Сейсмограммы ОТВ и ОСТ в плоскостях (X, T), (X, Z). Сущность построения временного разреза из трасс, просуммированных по гиперболическому годографу ОГТ. Соотношение кажущейся и истинной границ временного и глубинного разрезов на примере двухслойной среды. Точечный дифрактор. Годограф дифрагированной волны. Сейсмический снос. Динамический глубинный разрез. Классификация типов миграции.

лабораторная работа (4 часа(ов)):

Соотношение кажущейся и истинной границ временного и глубинного разрезов на примере двухслойной среды

Тема 3. Миграция в области времён.

лекционное занятие (2 часа(ов)):

Сущность миграции на основе дифракционного преобразования. Сущность миграции на основе решения волнового уравнения. 15-градусные и 45-градусные аппроксимации уравнения миграции.

лабораторная работа (8 часа(ов)):

1. Миграция на основе интеграла Кирхгоффа 2. Миграция на основе решения волнового уравнения

Тема 4. Спектральные методы миграции.

лекционное занятие (2 часа(ов)):

Дисперсионные соотношения скалярного волнового уравнения. Сущность метода Столта. Сущность метода фазового сдвига.

лабораторная работа (6 часа(ов)):

Спектральная миграция Миграция методом фазового сдвига

Тема 5. Прямое и обратное преобразование Радона

лекционное занятие (4 часа(ов)):

Прямое и обратное преобразование Радона. Порядок перехода из области времён в "тау-пи" область. Положение преломлённой, поверхностной, отражённой волн в "тау-пи" области.

лабораторная работа (10 часа(ов)):

Прямое и обратное преобразование Радона

Тема 6. Подавление регулярного шума на сейсмозаписях с помощью многоканальных процедур

лекционное занятие (4 часа(ов)):

Применение преобразования Радона для подавления регулярных волн-помех.

лабораторная работа (8 часа(ов)):

Фильтрация сейсмозаписей на основе преобразования Радона.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Построение скоростной модели среды по результатам обработки МОВ, полученных по методике многократных перекрытий.	2		подготовка к отчету	8	отчет
2.	Тема 2. Введение в сейсмическую миграцию.	2		подготовка к отчету	10	отчет
3.	Тема 3. Миграция в области времён.	2		подготовка к контрольной работе	12	контрольная работа
4.	Тема 4. Спектральные методы миграции.	2		подготовка к отчету	12	отчет
5.	Тема 5. Прямое и обратное преобразование Радона	3		подготовка к контрольной работе	14	контрольная работа
6.	Тема 6. Подавление регулярного шума на сейсмозаписях с помощью многоканальных процедур	3	l	подготовка к отчету	14	отчет
	Итого				70	

5. Образовательные технологии, включая интерактивные формы обучения

Проводятся лекции и лабораторные занятия с использованием компьютеров с применени-ем специализированного программного обеспечения. Часть материала изучается само-стоятельно.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Построение скоростной модели среды по результатам обработки МОВ, полученных по методике многократных перекрытий.

отчет, примерные вопросы:

Представить скоростную модель среды для проведения процедуры миграции по сейсмическому профилю

Тема 2. Введение в сейсмическую миграцию.

отчет, примерные вопросы:

Представить расчёт сейсмического сноса элементов временного разреза.

Тема 3. Миграция в области времён.

контрольная работа, примерные вопросы:

1. Соотношение кажущихся и истинных границ временного и глубинного разрезов для двухслойной среды. 2. Классификация типов миграции. 3. Сущность миграции на основе решения волнового уравнения.

Тема 4. Спектральные методы миграции.

отчет, примерные вопросы:

Представить временной разрез ОГТ с учётом сейсмического сноса по способу Кирхгоффа. Представить временной разрез ОГТ с учётом сейсмического сноса по методу фазового сдвига.

Тема 5. Прямое и обратное преобразование Радона

контрольная работа, примерные вопросы:

Сущность прямого и обратного преобразования Радона в сейсморазведке.

Тема 6. Подавление регулярного шума на сейсмозаписях с помощью многоканальных процедур

отчет, примерные вопросы:

Представить временной разрез ОГТ после подавления регулярных волн-помех с применением преобразования Радона.

Тема. Итоговая форма контроля

Тема. Итоговая форма контроля

Примерные вопросы к зачету и экзамену:

Максимальный суммарный балл по результатам выполнения контрольных ра-бот - 20.

Оценка активности студентов во время лабораторных занятий - до 30 баллов.

Максимальный балл итоговом контроле - 50.

Вопросы по дисциплине на зачет:

Процесс подготовки исходных данных. Способ последовательных аппроксимаций.

Итеративный спо-соб определения скоростной моде-ли среды.

Сейсмограммы ОТВ и ОСТ в плоскостях (X, T), (X, Z). Сущ-ность построения временного раз-реза из трасс, просуммированных по гиперболическому годографу ОГТ. Соотношение кажущейся и истинной границ временного и глубинного разрезов на примере двухслойной среды. Точечный ди-фрактор. Годограф дифрагирован-ной волны. Сейсмический снос. Динамический глубинный разрез. Классификация типов миграциию.

Вопросы по дисциплине на экзамен:

Сущность миграции на основе ди-фракционного преобразования. Сущность миграции на основе ре-шения волнового уравнения. 15-градусные и 45-градусные аппрок-симации уравнения миграции.

Дисперсионные соотношения ска-лярного волнового уравнения. Сущность метода Столта. Сущ-ность метода фазового сдвига.

Прямое и обратное преобразование Радона.

Подавление регулярного шума на сейсмозаписях с помощью много-канальных процедур.

7.1. Основная литература:

Проектирование поисково-разведочных работ на нефть и газ: Учебное пособие / В.Ю. Керимов, Р.Н. Мустаев, У.С. Серикова. - М.: НИЦ ИНФРА-М, 2016. - 200 с.: 60х90 1/16. - (Высшее образование: Магистратура) (Переплёт 7БЦ) ISBN 978-5-16-010821-6 http://znanium.com/bookread2.php?book=536775

Ягола А.Г. Обратные задачи и методы их решения. Приложения к геофизике. - М.: Бином. Лаборатория знаний, 2014. - 217 с. URL: http://e.lanbook.com/books/element.php?pl1_id=50537/.

Голик В. И. Подземная разработка месторождений: Учебное пособие / В.И. Голик. - М.: НИЦ ИНФРА-М, 2014. - 117 с.: 60х88 1/16. (обложка) ISBN 978-5-16-006752-0, 500 экз. URL: URL: http://znanium.com/bookread.php?book=406232

7.2. Дополнительная литература:

Сейсморазведка: учеб. для студентов вузов, обучающихся по спец. "Геофиз. методы поисков и разведки месторождений полез. ископаемых" направления подгот. дипломир. специалистов "Технологии геол. разведки" / Г.Н. Боганик, И.И. Гурвич; Рос. гос. геологоразведоч. ун-т, Ассоц. науч.-техн. и делового сотрудничества по геофиз. исслед. и работам в скважинах .? Тверь: АИС, 2006.? 743 с.

Интерпретация данных сейсморазведки : Справочник / [О. А. Потапов и др.] .? М. : Недра, 1990 .? 447,[1] с.

Учебное пособие для выполнения лабораторных работ по курсу "Геологическая интерпретация геофизических данных" / Казан. федер. ун-т ; [сост.: Ю. П. Балабанов, А. Ф. Исламов, Ю. М. Логинова] .? Казань : [Казанский университет], 2012 .? 25 с.

Бармасов, А. В. Курс общей физики для природопользователей. Колебания и волны: учеб. пособие / А. В. Бармасов, В. Е. Холмогоров / Под ред. А. П. Бобровского. ? СПб.: БХВ-Петербург, 2009. ? 256 c. URL: http://znanium.com/bookread.php?book=349952

Основы инженерной геологии: Учебник для средних спец. учебных заведений / Н.А.Платов - 3 изд., перераб., и доп. и исправл. - М.: ИНФРА-М, 2011. - 192 с.: 60х90 1/16. - (Среднее профессиональное образование). (п) ISBN 978-5-16-004554-2, 1000 экз. URL: http://znanium.com/bookread.php?book=252444

Войтенко В. С.Технология и техника бурения. В 2-х ч. Ч. 1. Горные породы и буровая техника: Учеб. пос. / Под общ. ред. В.С. Войтенко. - М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2013. - 237 с.: http://znanium.com/bookread.php?book=405029

Керимов В.Ю., Рачинский М.З. Геофлюидодинамика нефтегазоносности подвижных поясов. - М.: ООО "Издательский дом Недра", 2011. - 600 с. - ISBN 978-5-8365-0369-7. URL: http://znanium.com/bookread.php?book=349291

7.3. Интернет-ресурсы:

First Break - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2397
Geophysical Prospecting - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2478
Geophysics - http://geophysics.geoscienceworld.org/
Seismological Research Letters - http://srl.geoscienceworld.org/
The Leading Edge - http://tle.geoscienceworld.org/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Алгоритмы и технологии обработки сейсмических данных 1" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 05.04.01 "Геология" и магистерской программе Современные геофизические технологии поисков и разведки месторождений углеводородов.

Программа дисциплины "Алгоритмы и технологии обработки сейсмических данных 1"; 05.04.01 Геология; доцент, к.н. (доцент) Степанов А.В.

Автор(ы):			
Степанов А.В.			
""	_201 _	г.	
Рецензент(ы):			
Борисов А.С			
" " 	_ 201 _	_ г.	