M.G. Fazlyyyakhmatov a,b*, I.N. Shamanov a**, B.V. Sakharov a,c***, N.M. Khasanova a****,

M.A. Varfolomeev a*****, G.G. Samosorov d******, M.O. Pastukhov d*******

aKazan Federal University, Kazan, 420008 Russia

bKazan National Research Technical University named after A.N. Tupolev – KAI, Kazan, 420111 Russia

cState Research Center for Applied Microbiology and Biotechnology, Obolensk village, Serpukhov district, Moscow region, 142279 Russia

dCentral Forensic Customs Administration, Moscow, 125130 Russia

E-mail: *mfazlyjy@kpfu.ru, **insafsh77@gmail.com, ***saharoff2010@yandex.ru,
 ****nkhasano@yandex.ru*****mikhail.varfolomeev@kpfu.ru,
******cektu@ca.customs.gov.ru, *******pastukhovMO@ca.customs.gov.ru

Received June 19, 2023; Accepted July 24, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.2.322-339

For citation: Fazlyyyakhmatov M.G., Shamanov I.N., Sakharov B.V., Khasanova N.M., Varfolomeev M.A., Samosorov G.G., Pastukhov M.O. Determination of the aromatics content in mineral oils by LF NMR. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 2, pp. 322–339. doi: 10.26907/2542-064X.2023.2.322-339. (In Russian)

Abstract

Molecular group composition analysis of mineral oils is helpful to predict the performance of a future lubricant and to assess the compatibility of plasticizer oil with rubbers. The method of pulsed low-frequency NMR relaxation was used to determine the molecular group composition of 11 mineral oil samples, and the ratio of aromatic and non-aromatic hydrocarbons in them was calculated. NMR measurements were performed on a Chromatec-Proton 20M NMR analyzer with a 1H resonance frequency of 20 MHz. The method used consists in recording free induction decay signals, reconstructing the total signal amplitude, estimating the relative signal amplitude per unit mass of the sample, and calculating the proportion of aromatic hydrocarbons in the sample. The results were compared with those obtained by the standard chromatographic method. A high degree of correlation (R2 = 0.99) was observed between the results.

Keywords: NMR relaxation, FID, mineral oils, relative hydrogen index, relative proton density, RHI

Figure Captions

Fig. 1. FID signals of oil samples А.1–А.11 with known aromatics content.

Fig. 2. Correlation dependence of RHI values in two models.

Fig. 3. Correlation dependence of aromatics content based on NMR relaxation data and the method described in Appendix A.

Fig. 4. NMR relaxation signals in a series of CPMG pulse sequence of oil samples А.1–А.11 with known aromatics content.

Fig. 5. Correlation dependence of dynamic viscosity on spin-spin NMR relaxation rate of oil samples A.4–A.11.

References

  1. Tupikin E.I. Obshchaya neftekhimiya [General Petrochemistry]. St. Petersburg, Lan’, 2021. 320 p. Available at: https://e.lanbook.com/book/179621/. (In Russian)
  2. Pokonova Yu.V. Khimiya vysokomolekulyarnykh soedinenii nefti [Chemistry of Macromolecular Oil Compounds]. Leningrad, Izd. Leningr. Univ., 1980. 172 p. (In Russian)
  3. Syunyaev Z.I. (Ed.) Khimiya nefti [Petroleum Chemistry]. Leningrad, Khimiya, 1984. 360 p. (In Russain)
  4. Ivashkina E.N., Yur’ev E.M., Krivtsova N.I., Belinskaya N.S. Tekhnologiya pererabotki nefti i gaza [Oil and Gas Processing Technology]. Tomsk, TPU, 2021. 172 p. Available at: https://e.lanbook.com/book/246131/. (In Russian)
  5. Ukhanov A.P., Ukhanov D.A., Glushchenko A.A., Khokhlov A.L. Ekspluatatsionnye materialy [Operating Materials]. St. Petersburg, Lan’, 2022. 528 p. Available at: https://e.lanbook.com/book/264500/. (In Russian)
  6. Rand S.J. Analiz nefteproduktov. Metody, ikh naznachenie i primenenie [Significance of Tests for Petroleum Products]. Novikov E.A., Nekhamkina L.G. (Eds.). St. Petersburg, TsOP “Professiya”, 2012. 664 p. Available at: https://znanium.com/catalog/product/1859930/. (In Russian)
  7. Zaglyadova S.V., Antonov S.A., Maslov I.A., Kitova M.V., Rudyak K.B., Leimeter T.D. Technologies for producing of environmentally safe process oils. Pet. Chem., 2017, vol. 57, no. 12. pp. 1105–1114. doi: 10.1134/S0965544117120167.
  8. ASTM D2549-02(2017). Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography. West Conshohocken, 2023. 6 p. doi: 10.1520/D2549-02R17.
  9. ASTM D2007-11(2016). Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. West Conshohocken, 2020. 8 p. doi: 10.1520/D2007-11R16.
  10. Unified commodity nomenclature for foreign economic activity of the EAEU and the uniform customs tariff for foreign economic activity of the EAEU. Available at: https://www.consultant.ru/document/cons_doc_LAW_397176/. (In Russian)
  11. Manheim J., Zhang Y., Viidanoja J., Kenttämaa H.I. An automated method for chemical composition analysis of lubricant base oils by using atmospheric pressure chemical ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2019, vol. 30, no. 10, pp. 2014–2021. doi: 10.1007/s13361-019-02284-6.
  12. Hourani N., Muller H., Adam F.M., Panda S.K., Witt M., Al-Hajji A.A., Sarathy S.M. Structural level characterization of base oils using advanced analytical techniques. Energy Fuels, 2015, vol. 29, no. 5, pp. 2962–2970. doi: 10.1021/acs.energyfuels.5b00038.
  13. Lee S., Palacio Lozano D.C., Jones H.E., Shin K., Barrow M.P. Characterization of mineral and synthetic base oils by gas chromatography–mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels, 2022, vol. 36, no. 22, pp. 13518–13525. doi: 10.1021/acs.energyfuels.2c02437.
  14. Mäkelä V., Karhunen P., Siren S., Heikkinen S., Kilpeläinen I. Automating the NMR analysis of base oils: Finding napthene signals. Fuel, 2013, vol. 111, pp. 543–554. doi: 10.1016/j.fuel.2013.04.020.
  15. Sharma B.K., Adhvaryu A., Perez J.M., Erhan S.Z. Effects of hydroprocessing on structure and properties of base oils using NMR. Fuel Process. Technol., 2008, vol. 89, no. 10, pp. 984–991. doi: 10.1016/j.fuproc.2008.04.001.
  16. Sarpal A.S., Kapur G.S., Mukherjee S., Jain S.K. Characterization by 13C n.m.r. spectroscopy of base oils produced by different processes. Fuel, 1997, vol. 76, no. 10, pp. 931–937. doi: 10.1016/S0016-2361(97)00085-9.
  17. Wu Y.-W., Li B.-N., Liu L.-L., Ouyang J. Research progress of analysis of mineral oil hydrocarbons using on-line high performance liquid chromatography coupled with gas chromatography. Chin. J. Anal. Chem., 2021, vol. 49, no. 3, pp. 341–349. doi: 10.1016/S1872-2040(21)60084-1.
  18. Palmentier J.-P.F., Britten A.J., Charbonneau G.M., Karasek F.W. Determination of polycyclic aromatic hydrocarbons in lubricating oil base stocks using high-performance liquid chromatography and gas chromatography–mass spectrometry. J. Chromatogr. A, 1989, vol. 469, pp. 241–251. doi: 10.1016/S0021-9673(01)96459-3.
  19. Khanmohammadi M., Garmarudi A.B., de la Guardia M. Characterization of petroleum-based products by infrared spectroscopy and chemometrics. TrAC, Trends Anal. Chem., 2012, vol. 35, pp. 135–149. doi: 10.1016/j.trac.2011.12.006.
  20. ASTM D7171-20. Standard Test Method for Hydrogen Content of Middle Distillate Petroleum Products by Low-Resolution Pulsed Nuclear Magnetic Resonance Spectroscopy. West Conshohocken, 2020. 6 p. doi: 10.1520/D7171-20.
  21. Standard method for hydrogen content in fuels. Available at: https://nmr.oxinst.com/
    assets/uploads/Standard-Method-for-Hydrogen-Content-in-Fuels-ASTM-D7171-05-Updated-23-11-20.pdf.
  22. Determination of paraffin content in petroleum products. Available at: https://www.avrora-test.ru/upload/medialibrary/627/6274e0eee05e640fb9358904fabb1e97.pdf. (In Russian)
  23. ASTM D7042-16e3. Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity. West Conshohocken, 2020. 13 p. doi: 10.1520/D7042-16E03.
  24. Bryan J., Kantzas A., Bellehumeur C. Oil-viscosity predictions from low-field NMR measurements. SPE Reservoir Eval. Eng., 2005, vol. 8, no. 1, pp. 44–52. doi: 10.2118/89070-PA.
  25. Morgan V.G., Barbosa L.L., Lacerda V., Jr., de Castro E.V.R. Evaluation of the physicochemical properties of the postsalt crude oil for low-field NMR. Ind. Eng. Chem. Res., 2014, vol. 53, no. 21, pp. 8881–8889. doi: 10.1021/ie500761v.
  26. Barbosa L.L., Montes L.F., Kock F.V.C., Morgan V.G., Souza A., Song Y.-Q., Castro E.R.V. Relative hydrogen index as a fast method for the simultaneous determination of physicochemical properties of petroleum fractions. Fuel, 2017, vol. 210, pp. 41-48. doi: 10.1016/j.fuel.2017.08.057.
  27. Volkov V.Y., Sakharov B.V., Khasanova N.M., Nurgaliev D.K. Analysis of the composition and properties of heavy oils in situ by low field NMR relaxation method. Georesourses, 2018, vol. 20, no. 4, pp. 308–323. doi: 10.18599/grs.2018.4.308-323.
  28. Volkov V.Y., Al-Muntaser A.A., Varfolomeev M.A., Khasanova N.M., Sakharov B.V., Suwaid M.A., Djimasbe R., Galeev R.I., Nurgaliev D.K. Low-field NMR-relaxometry as fast and simple technique for in-situ determination of SARA-composition of crude oils. J. Pet. Sci. Eng., 2021, vol. 196, art. 107990. doi: 10.1016/j.petrol.2020.107990.
  29. Galeev R.I., Sakharov B.V., Khasanova N.M., Volkov V.Y., Fazlyyyakhmatov M.G., Shamanov I.N., Emelianov D.A., Kozlova E.V., Petrashov O.V., Varfolomeev M.A., Nurgaliev D.K. Novel low-field NMR method for characterization content and SARA composition of bitumen in rocks. J. Pet. Sci. Eng., 2022, vol. 214, art. 110486. doi: 10.1016/j.petrol.2022.110486.
  30. ASTM D4124-09(2018). Standard Test Method for Separation of Asphalt into Four Fractions. West Conshohocken, 2018. 8 p. doi: 10.1520/D4124-09.

 

The content is available under the license Creative Commons Attribution 4.0 License.