A.Yu. Ratushnyy

SSC RF – Institute of Biomedical Problems, Russian Academy of Sciences,
Moscow, 123007 Russia

E-mail: ratushkin@mail.ru

Received October 5, 2022; Accepted November 21, 2022

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.2.216-230

For citation: Ratushnyy A.Yu. Immunophenotype of replicative senescent mesenchymal stromal cells. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 2, pp. 216–230. doi: 10.26907/2542-064X.2023.2.216-230. (In Russian)

Abstract

Mesenchymal stromal cells (MSCs), a population of progenitor cells in adult tissues, are involved in the processes of physiological tissue renewal and damage-induced regeneration. MSCs have been widely studied as regenerative medicine agents. In this regard, the tissue-specific features of MSC subpopulations should be taken into account. MSCs have many potentially beneficial properties that can alter significantly with age. The ability of a cell to respond to external signals and regulate its functional state is commonly attributed to the repertoire of receptors on the cell membrane. This article considers the surface marker expression of senescent adipose-derived MSCs (AD-MSCs). Replicative senescence was caused by long-term cultivation. An increase in the expression of CD29, CD44, CD54, CD73, CD90, and HLA-ABC on the AD-MSCs was shown. The expression of CD105 and CD51/61 did not change reliably under the experimental conditions. The revealed effects are related not only to the larger cell size or higher autofluorescence, but also to the increased number of markers per unit area of the cell surface. The detected changes may underlie a number of modifications in the properties of senescent MSCs, including migration, adhesion, and immunomodulatory and angiogenic activities.

Keywords: mesenchymal stromal cells (MSCs), cell senescence, immunophenotype, flow cytometry

Acknowledgements. This study was supported by the Russian Science Foundation (project no. 21-75-10117).

Figure Captions

Fig. 1. Signs of MSC senescence and surface marker expression in long-term cultivation: a) – senescence-associated active β-galactosidase (SA-β-gal) in MSCs at early (P5) and late (P21) passages detected by light microscopy; b) – distribution of MSCs by size (FSC-A) and granularity (SSC-A) based on flow cytometry data. The results of a representative experiment are shown; c) – mean fluorescence intensity (MFI), which is associated with antigen expression on the MSC surface, at early (P2–6) and late (P21–23) passages. All data are reported as the mean value ± standard deviation, n ≥ 5, * – p ≤ 0.05.

Fig. 2. Expression of surface markers on MSCs in long-term cultivation at different passages: P5 and P10, as well as P21 (with confirmed senescence). The results of a representative experiment are shown.

Fig. 3. Size gating of MSCs at different passages (gate R3). In this approach, cells outside the specified size range, i.e., either larger or smaller, are excluded from further analysis. Flow cytometry, the results of a representative experiment.

References

  1. Pittenger M.F., Discher D.E., Péault B.M., Phinney D.G., Hare J.M., Caplan A.I. Mesenchymal stem cell perspective: Сell biology to clinical progress. npj Regener. Med., 2019, vol. 4, no. 1, art. 22. doi: 10.1038/s41536-019-0083-6.
  2. Jovic D., Yu Y., Wang D., Wang K., Li H., Xu F., Liu C., Liu J., Luo Y. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev. Rep., 2022, vol. 18, no. 5, pp. 1525–1545. doi: 10.1007/s12015-022-10369-1.
  3. Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells – current trends and future prospective. Biosci. Rep., 2015, vol. 35, no. 2, art. e00191. doi: 10.1042/BSR20150025.
  4. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317. doi: 10.1080/14653240600855905.
  5. Elahi K.C., Klein G., Avci-Adali M., Sievert K.D., MacNeil S., Aicher W.K. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int., 2016, vol. 2016, art. 5646384. doi: 10.1155/2016/5646384.
  6. Wright A., Arthaud-Day M.L., Weiss M.L. Therapeutic use of mesenchymal stromal cells: The need for inclusive characterization guidelines to accommodate all tissue sources and species. Front. Cell Dev. Biol., 2021. vol. 9. art. 632717. doi: 10.3389/fcell.2021.632717.
  7. Baker N., Boyette L.B., Tuan R.S. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone, 2015, vol. 70, pp. 37–47. doi: 10.1016/j.bone.2014.10.014.
  8. Dimmeler S., Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res., 2008, vol. 102, no. 11, pp. 1319–1330. doi: 10.1161/CIRCRESAHA.108.175943.
  9. Li Y., Wu Q., Wang Y., Li L., Bu H., Bao J. Senescence of mesenchymal stem cells (Review). Int. J. Mol. Med., 2017, vol. 39, no. 4, pp. 775–782. doi: 10.3892/ijmm.2017.2912.
  10. Turinetto V., Vitale E., Giachino C. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci., 2016, vol. 17, no. 7, art. 1164. doi: 10.3390/ijms17071164.
  11. Legzdina D., Romanauska A., Nikulshin S., Kozlovska T., Berzins U. Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int. J. Stem Cells, 2016, vol. 9, no. 1, pp. 124–136. doi: 10.15283/ijsc.2016.9.1.124.
  12. Ratushnyy A.Yu., Buravkova L.B. Cell senescence and mesenchymal stromal cells. Hum. Physiol., 2020, vol. 46, no. 1, pp. 85–93. doi: 10.1134/S0362119720010132.
  13. Ratushnyy A., Ezdakova M., Buravkova L. Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis. Int. J. Mol. Sci., 2020,vol. 21, no. 5, art. 1802. doi: 10.3390/ijms21051802.
  14. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., 2001, vol. 7, no. 2, pp. 211–228. doi: 10.1089/107632701300062859.
  15. Ratushnyy A., Lobanova M., Buravkova L. Expansion of adipose tissue-derived stromal cells at “physiologic” hypoxia attenuates replicative senescence. Cell Biochem. Funct., 2017, vol. 35, no. 4, pp. 232–243. doi: 10.1002/cbf.3267.
  16. Ratushnyy A.Yu., Rudimova Y.V., Buravkova L.B. Replicative senescence and expression of autophagy genes in mesenchymal stromal cells. Biochemistry (Moscow), 2020, vol. 85, no. 10, pp. 1169–1177. doi: 10.1134/S0006297920100053.
  17. Chen J.-Y., Mou X.-Z., Du X.-C., Xiang C. Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pac. J. Trop. Med., 2015, vol. 8, no. 9, pp. 739–746. doi: 10.1016/j.apjtm.2015.07.022.
  18. Campisi J., d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 9, pp. 729–740. doi: 10.1038/nrm2233.
  19. Wagner W., Horn P., Castoldi M., Diehlmann A., Bork S., Saffrich R., Benes V., Blake J., Pfister S., Eckstein V., Ho A.D. Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS ONE, 2008, vol. 3, no. 5, art. e2213. doi: 10.1371/journal.pone.0002213.
  20. Safwani W.K.Z.W., Makpol S., Sathapan S., Chua K.H. The impact of long-term in vitro expansion on the senescence-associated markers of human adipose-derived stem cells. Appl. Biochem. Biotechnol., 2012, vol. 166, no. 8, pp. 2101–2113. doi: 10.1007/s12010-012-9637-4.
  21. Liu J., Ding Y., Liu Z., Liang X. Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Front. Cell Dev. Biol., 2020, vol. 8, art. 258. doi: 10.3389/fcell.2020.00258.
  22. Savickienė J., Baronaitė S., Zentelytė A., Treigyte G., Navakauskienė R. Senescence-associated molecular and epigenetic alterations in mesenchymal stem cell cultures from amniotic fluid of normal and fetus-affected pregnancy. Stem Cells Int., 2016, vol. 2016, art. 2019498. doi: 10.1155/2016/2019498.
  23. Jung E.M., Kwon O., Kwon K.S., Cho Y.S., Rhee S.K., Min J.K., Oh D.B. Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2011, vol. 404, no. 1, pp. 463– 469. doi: 10.1016/j.bbrc.2010.12.003.
  24. Gnani D., Crippa S., della Volpe L., Rossella V., Conti A., Lettera E., Rivis S., Ometti M., Fraschini G., Bernardo M.E., Di Micco R. An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro-inflammatory program. Aging Cell, 2019, vol. 18, no. 3, art. e12933. doi: 10.1111/acel.12933.
  25. Mun G.I., Boo Y.C. Identification of CD44 as a senescence-induced cell adhesion gene responsible for the enhanced monocyte recruitment to senescent endothelial cells. Am. J. Physiol.: Heart Circ. Physiol., 2010, vol. 298, no. 6, pp. H2102–2111. doi: 10.1152/ajpheart.00835.2009.
  26. Ke C., Chen J., Guo Y., Chen Z.W., Cai J. Migration mechanism of mesenchymal stem cells studied by QD/NSOM. BBA, Biochim. Biophys. Acta, Biomembr., 2015, vol. 1848, no. 3, pp. 859–868. doi: 10.1016/j.bbamem.2014.12.013.
  27. de Leve S., Wirsdörfer F., Jendrossek V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front. Immunol., 2019, vol. 10, art. 698. doi: 10.3389/fimmu.2019.00698.
  28. Sauzay C., Voutetakis K., Chatziioannou A., Chevet E., Avril T. CD90/Thy-1, a cancer-associated cell surface signaling molecule. Front. Cell Dev. Biol., 2019, vol. 7, art. 66. doi: 10.3389/fcell.2019.00066.

 

The content is available under the license Creative Commons Attribution 4.0 License.