G.P. Belyaev*, A.B. Vyshtakalyuk**, A.A. Parfenov***, I.V. Galyametdinova****,

V.E. Semenov*****, V.V. Zobov******

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *gregoir4@gmail.com, **alex.vysh@mail.ru, ***aimt66@gmail.com

****iragal2009@yahoo.com*****sve@iopc.ru******vz30608@mail.ru

Received June 29, 2022; Accepted October 7, 2022

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.2.175-189

For citation: Belyaev G.P., Vyshtakalyuk A.B., Parfenov A.A., Galyametdinova I.V., Semenov V.E., Zobov V.V. Antifibrotic effect of pyrimidine derivatives of Xymedon and its conjugate with L-ascorbic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 2, pp. 175–189. doi: 10.26907/2542-064X.2023.2.175-189. (In Russian) 

Abstract

This article considers the antifibrotic properties of pyrimidine derivatives of the drug Xymedon (compound (I)) and its conjugate with L-ascorbic acid (compound (II)) in an experimental rat model of fibrosis with a preventive administration scheme.

Experimental fibrosis was induced in Wistar rats given carbon tetrachloride (5% oil solution, 0.2 mL/kg orally twice a week) in combination with ethanol (5% solution in drinking water, free access) against compounds (I) and (II), both administered preventively. Fibrotic changes in the liver were detected by Van Gieson’s staining. The effects of the studied compounds on the liver and clinical condition of rats were evaluated through serum biochemical parameters.

The treatment of rats with compounds (I) and (II) reduced the number of fibrotic areas threefold, ameliorated hepatic steatosis and necrosis as compared to the control group, and improved blood biochemical parameters (ALT, AST, and LDH). Interestingly, compound (II) had a more pronounced effect.

Therefore, pyrimidine derivatives of Xymedon and its conjugate with L-ascorbic acid showed an antifibrotic effect in our experimental rat model of fibrosis.

Keywords: fibrosis, antifibrotic effect, collagen, Xymedon, carbon tetrachloride

Acknowledgements. This study was performed under the state assignment to the FRC Kazan Scientific Center, Russian Academy of Sciences.

Figure Captions

Fig. 1. Structural formulas of the studied compounds. 1 – Xymedon (compound (I)), 2 – conjugate of Xymedon with L-ascorbic acid (compound (II)).

Fig. 2. Effect of compounds (I) and (II) on the rat liver mass ratio. 1 – intact control group, 2 – control group, 3 – compound (I) group, 4 – compound (II) group. * – differences with the intact group are reliable, p < 0.05; # – differences with the control group are reliable, p < 0.05.

Fig. 3. Effect of compounds (I) and (II) on the cell damage markers. A – aspartate aminotransferase (AST) activity, B – alanine aminotransferase (ALT) activity, C – lactate dehydrogenase (LDH) activity. 1 – intact control group, 2 – control group, 3 – compound (I) group, 4 – compound (II) group. * – differences with the intact control group are reliable, p < 0.05; # – differences with the control group are reliable, p < 0.05.

Fig. 4. Effect of compounds (I) and (II) on the liver tissue morphology, hematoxylin and eosin staining, magnification 100x and 200x.

Fig. 5. Effect of compounds (I) and (II) on the development of collagen fibers (red) in the liver tissue, Van Gieson’s staining, magnification 100x and 200x.

Fig. 6. Effect of compounds (I) and (II) on the development of collagen fibers (red) in the liver tissue, Van Gieson’s staining without Weigert’s hematoxylin to contrast collagen staining, magnification 40x.

Fig. 7. Effect of compounds (I) and (II) on the percentage of collagen area in the rat liver tissue. 1 – intact control group, 2 – control group, 3 – compound (I) group, 4 – compound (II) group. * – differences with the intact control group are reliable, p < 0.0085; # – differences with the control group are reliable, p < 0.0085.

References

  1. Faccioli L.A.P., Dias M.L., Paranhos B.A., dos Santos Goldenberg R.C. Liver cirrhosis: An overview of experimental models in rodents. Life Sci., 2022, vol. 301, art. 120615. doi: 10.1016/j.lfs.2022.120615.
  2. Mokdad A.A., Lopez A.D., Shahraz S., Lozano R., Mokdad A.H., Stanaway J., Murray C.J., Naghavi M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med., 2014, vol. 12, no. 1, art. 145. doi: 10.1186/s12916-014-0145-y.
  3. Li M.-H., Feng X., Deng Ba D.J., Chen C., Ruan L.-Y., Xing Y.-X., Chen L.-Y., Zhong G.-J., Wang J.-S. Hepatoprotection of Herpetospermum caudigerum Wall. against CCl4-induced liver fibrosis on rats. J. Ethnopharmacol., 2019, vol. 229, pp. 1–14. doi: 10.1016/j.jep.2018.09.033.
  4. Ben Hsouna A., Hfaiedh M., Slima S.B., Romdhane W.B., Akacha B.B., Bouterra M.T., Dhifi W., Mnif W., Brini F., Ben Saad R., Ben Salah R. Antioxidant and hepatoprotective effects of novel heteropolysaccharide isolated from Lobularia maritima on CCl4‐induced liver injury in rats. Food Sci. Nutr., 2022, vol. 10, no. 7. pp. 2271–2284. doi: 10.1002/fsn3.2836.
  5. Brol M.J., Rösch F., Schierwagen R., Magdaleno F., Uschner F.E., Manekeller S., Queck A., Schwarzkopf K., Odenthal M., Drebber U., Thiele M., Lingohr P., Plamper A., Kristiansen G., Lotersztajn S., Krag A., Klein S., Rheinwalt K.P., Trebicka J. Combination of CCl4 with alcoholic and metabolic injuries mimics human liver fibrosis. Am. J. Physiol.: Gastrointest. Liver Physiol., 2019, vol. 317, no. 2, pp. G182–G194. doi: 10.1152/ajpgi.00361.2018.
  6. Vyshtakalyuk A.B., Nazarov N.G., Semenov V.E., Galyametdinova I.V., Diabankana R.G.K., Porfiriev A.G., Zobov V.V. Recovery of liver damaged by CCl4 under treatment by conjugate of drug Xymedon with L-ascorbic acid. Int. J. Pharm. Sci. Res., 2018, vol. 9, no. 10, pp. 4117–4126. doi: 10.13040/IJPSR.0975-8232.9(10).4117-26.
  7. Reznik V.S., Pashkurov N.G. Reactions of pyrimidinols and pyrimidinethiols with 2-chloroethanol and with 2-chloro-1-propanol. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, vol. 15, no. 9, pp. 1554–1557. doi: 10.1007/BF00848915.
  8. Vyshtakalyuk A.B., Semenov V.E., Zobov V.V., Galyametdinova I.V., Gumarova L.F., Parfenov A.A., Nazarov N.G., Lenina O.A., Kondrashova S.A., Latypov Sh.K., Cherepnev G.V., Shashyn M.S., Reznic V.S. Synthesis and primary evaluation of the hepatoprotective properties of novel pyrimidine derivatives. Russ. J. Bioorg. Chem., 2017, vol. 43, no. 5, pp. 604–611. doi: 10.1134/S106816201704015X.
  9. Mironov A.N. (Ed.) Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv [A Guide to Preclinical Drug Testing]. Pt. 2. Moscow, Grif i K, 2012. 536 p. (In Russian)
  10. Commission Recommendation of 18 June 2007 on guidelines for the accommodation and care of animals used for experimental and other scientific purposes (2007/526/EC). OJEU, 2007, vol. L197, pp. 1–89.
  11. Arjmand A., Tsipouras M.G., Tzallas A.T., Forlano R., Manousou P., Giannakeas N. Quantification of liver fibrosis–A comparative study. Appl. Sci., 2020, vol. 10, no. 2, art. 447. doi: 10.3390/app10020447.
  12. Abd-Elhakim Y.M., Ghoneim M.H., Khairy M.H., Eissa S.A. Single or combined protective and therapeutic impact of taurine and hesperidin on carbon tetrachloride-induced acute hepatic injury in rat. Environ. Sci. Pollut. Res., 2020, vol. 27, no. 12, pp. 13180–13193. doi: 10.1007/s11356-020-07895-1.
  13. Zheng W.V., Li Y., Cheng X., Xu Y., Zhou T., Li D., Xiong Y., Wang S., Chen Z. Uridine alleviates carbon tetrachloride-induced liver fibrosis by regulating the activity of liver-related cells. J. Cell. Mol. Med., 2021, vol. 26, no. 3, pp. 840–854. doi: 10.1111/jcmm.17131.
  14. Moteki H., Kimura M., Sunaga K., Tsuda T., Ogihara M. Signal transduction mechanism for potentiation by α1- and β2-adrenoceptor agonists of L-ascorbic acid-induced DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur. J. Pharmacol., 2013; vol. 700, nos. 1–3, pp. 2–12. doi: 10.1016/j.ejphar.2012.12.010.
  15. Kimura M., Moteki H., Uchida, M., Natsume H., Ogihara M. L-ascorbic acid- and L-ascorbic acid 2-glucoside accelerate in vivo liver regeneration and lower serum alanine aminotransaminase activity in 70% partially hepatectomized rats. Biol. Pharm. Bull., 2014, vol. 37, no. 4, pp. 597–603. doi: 10.1248/bpb.b13-00839.
  16. Luo Q., Jiang M., Kou L., Zhang L., Li G., Yao Q., Shang L., Chen Y. Ascorbate-conjugated nanoparticles for promoted oral delivery of therapeutic drugs via sodium-dependent vitamin C transporter 1 (SVCT1). Artif. Cells, Nanomed., Biotechnol., 2017, vol. 46, no. 1, pp. 198–208. doi: 10.1080/21691401.2017.1417864.
  17. Slabnov Y.D., Cherepnev G.V., Karimova F.G., Garaev R.S. Effect of pyrimidine derivatives on adenylate cyclase system of immunocompetent cell regulation in vitro. Bull. Exp. Biol. Med., 1998, vol. 125, no. 6, pp. 588–590. doi: 10.1007/bf02445248.
  18. Ladilov Y., Appukuttan A. Role of soluble adenylyl cyclase in cell death and growth. BBA, Biochim. Biophys. Acta., Mol. Basis Dis., 2014, vol. 1842, no. 12, pp. 2646–2655. doi: 10.1016/j.bbadis.2014.06.034.
  19. Borland G., Smith B.O., Yarwood S.J. EPAC proteins transduce diverse cellular actions of cAMP. Br. J. Pharmacol., 2009, vol. 158, no. 1, pp. 70–86. doi: 10.1111/j.1476-5381.2008.00087.x.
  20. Tavares L.P., Negreiros-Lima G.L., Lima K.M., E Silva P.M.R., Pinho V., Teixeira M.M., Sousa L.P. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol. Res., 2020, vol. 159, art. 105030. doi: 10.1016/j.phrs.2020.105030.
  21. Strickland J.D., Copple B.L. Chapter Six – Modulation of macrophage phenotype to treat liver fibrosis – Current approaches and future possibilities. In: Advances in Pharmacology. Vol. 91: Advances in immunopharmacology. Copple B.L., Rockwell C.E. (Eds.). Acad. Press, 2021, pp. 213 ‑‑ 228. doi: 10.1016/bs.apha.2021.03.001.
  22. Parfenov A., Belyaev G., Vyshtakalyuk A., Gumarova L., Khasanshina L., Semenov V., Zobov V. The influence of Xymedon conjugate with L-ascorbic acid on initial development of fibrosis in the rat liver after toxic exposure of CCl4. Eur. J. Clin. Invest., 2021, vol. 51, no. S1, p. 78.
  23. Chen D., Chen J., Chen Y., Chen F., Wang X., Huang Y. Interleukin-10 regulates starvation-induced autophagy through the STAT3-mTOR-p70s6k axis in hepatic stellate cells. Exp. Biol. Med., 2022, vol. 247, no. 10, pp. 832–841. doi: 10.1177/15353702221080435.
  24. Xu Y., Liang P., Bian M., Chen W., Wang X., Lin J., Shang M., Qu H., Wu Z., Huang Y., Yu X. Interleukin-13 is involved in the formation of liver fibrosis in Clonorchis sinensis-infected mice. Parasitol. Res., 2016, vol. 115, no. 7, pp. 2653–2660. doi: 10.1007/s00436-016-5012-7.
  25. Elnagdy M., Barve S., McClain C., Gobejishvili L. cAMP signaling in pathobiology of alcohol associated liver disease. Biomolecules, 2020, vol. 10, no. 10, art. 1433. doi: 10.3390/biom10101433.
  26. Semenov V.E. Hepatoprotective agent. Patent RF no. 2590952, 2016. (In Russian)
  27. Rockey D.C., Du Q., Shi Z. Smooth muscle α-actin deficiency leads to decreased liver fibrosis via impaired cytoskeletal signaling in hepatic stellate cells. Am. J. Pathol., 2019, vol. 189, no. 11, pp. 2209–2220. doi: 10.1016/j.ajpath.2019.07.019.

 

The content is available under the license Creative Commons Attribution 4.0 License.