L.P.T. Quoc*, H.N.Q. Anh**

Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam

E-mail: *lephamtanquoc@iuh.edu.vn, **huynhnguyenqueanh@iuh.edu.vn

Received November 2, 2022; Accepted December 5, 2022

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.58-67

For citation: Quoc L.P.T., Anh H.N.Q. Ultrasound-assisted extraction of phenolic compounds from Polyscias fruticosa (L.) Harms root. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 58–67. doi: 10.26907/2542-064X.2023.1.58-67.

 

Abstract

Polyscias fruticosa (L.) Harms root extracts were obtained and separated using ultrasound-assisted extraction (UAE) with the preset optimal parameters, such as solvent/solid (SS) ratio (50/1, mL g–1), ethanol concentration (40%, v/v), temperature (45 °C), and extraction time (20 min). The best values of the total phenolic content (TPC) and antioxidant capacity (AC) of the extracts under these extraction conditions were 2.13 ± 0.02 mg of gallic acid equivalents (GAE) per gram of dry sample weight (DW) for TPC and 78.13 ± 0.25% for AC. In addition, the structure of the plant material was examined by scanning electron microscopy (SEM): it was revealed that the structure of the residues changed completely as a result of the ultrasound treatment compared to the initial material.

Keywords: ethanol, herb, phenolic compounds, Polyscias fruticosa, UAE

Acknowledgments. This research was performed at the Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City (Vietnam).

The authors would like to thank Bui Thi Huyen Phuong, Nguyen Thi My Tien, and Tran Quoc Thang for their helpful advice on various technical issues examined in this paper.

Figure Captions

Fig. 1. Structure of the plant material before (a) and after (b) UAE.

References

  1. Déléris P., Nazih H., Bard J.-M. Seaweeds in human health. In: Fleurence J., Levine I., (Eds.) Seaweed in Health and Disease Prevention. Ch. 10. London, Elsevier, Acad. Press, 2016, pp. 319–367.
  2. Haminiuk C.W.I, Maciel G.M., Plata-Oviedo M.S.V., Peralta R.M. Phenolic compounds in fruits – an overview. Int. J. Food Sci. Technol., 2012, vol. 47, no. 10, pp. 2023–2044. doi: 10.1111/j.1365-2621.2012.03067.x.
  3. Ashmawy N.S., Gad H.A., Ashour M.L., El-Ahmady S.H., Singab A.N.B. The genus Polyscias (Araliaceae): A phytochemical and biological review. J. Herb. Med., 2020, vol. 23, art. 100377. doi: 10.1016/j.hermed.2020.100377.
  4. Figat R., Śliwińska A., Stochmal A., Soluch A., Sobczak M., Zgadzaj A., Sykłowska-Bara­nek K., Pietrosiuk A. Antigenotoxic, anti-photogenotoxic, and antioxidant properties of Polyscias filicifolia shoots cultivated in vitro. Molecules, 2020, vol. 25, no. 5, art. 1090. doi: 10.3390/molecules25051090.
  5. Luyen N.T., Dang N.H., Binh P.T.X., Hai N.T., Dat N.T. Hypoglycemic property of triterpenoid saponin PFS isolated from Polyscias fruticosa leaves. An. Acad. Bras. Ciênc., 2018, vol. 90, no. 3, pp. 2881–2886. doi: 10.1590/0001-3765201820170945.
  6. Mai N.P. Cultivation method for producing Ming aralia (Polyscias fruticosa (L.) Harms) under saline conditions. Master of Science Thesis. Thailand, Kasetsart University, 2020, 78 p.
  7. David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, vol. 10, no. 20, pp. 84–89.
  8. Do T.L. Những cây thuốc và vị thuốc Việt Nam. Hà Nội, Nhà xuất bản Y học, 2004, 1274 p. (In Vietnamese)
  9. Pakianathan B.M.N.N., Venkataswamy R., Divakar M.C. A pharmacognostic report on the leaf and root of Polyscias fruticosa (L.) Harms. Ancient Sci. Life, 1998, vol. 18, no. 2, pp. 165–172.
  10. Hau N.T., Nhu Thao L.T., Minh T.V. Cultivation of leaf-tissue of Polyscias fruticosa (L.) Harms for quantity of saponin accumulation. Acad. J. Biol., 2015, vol. 37, no. 1se, pp. 184–189. doi: 10.15625/0866-7160/v37n1se.6108.
  11. Le H.H., Pham T.P., Nguyen T.H., Ho B.D., Nguyen Q.H. Study of ultrasound-assisted acid hydrolysis to obtain quercetin and their antioxidant activities from some plants. VNU J. Sci.: Nat. Sci. Technol., 2019 vol. 35, no. 4, pp. 88–95. doi: 10.25073/2588-1140/vnunst.4961.
  12. Nguyen N.Q., Nguyen V.T., Nguyen D.V., Nguyen T.H.P., Truong T.H., Nguyen Q.T., Ngo T.L.G., Le T.T.T., Nguyen D.K., Le K.P. Evaluate the total polyphenol, flavonoid and antioxidant activity of dinh lang roots (Polyscias fruticosa (L.) Harm) naturalli grown and cultivated by aeroponic methods. J. Sci. Technol. – NTTU, 2019, vol. 8, pp. 38–41. (In Vietnamese)
  13. Nguyen N.Q., Nguyen M.T., Nguyen V.T., Le V.M., Trieu L.H., Le X.T., Khang T.V., Giang N.T.L., Thach N.Q., Hung T.T. The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 736, art. 022067. doi: 10.1088/1757-899X/736/2/022067.
  14. Azwanida N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, vol. 4, no. 3, art. 1000196. doi: 10.4172/2167-0412.1000196.
  15. Wen C., Zhang J., Zhang H., Dzah C.S., Zandile M., Duan Y., Ma H., Luo X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrason. Sonochem., 2018, vol. 48, pp. 538–549. doi: 10.1016/j.ultsonch.2018.07.018.
  16. Khoddami A., Wilkes M.A., Roberts T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, vol. 18, no. 2, pp. 2328–2375. doi: 10.3390/molecules18022328.
  17. Siddiqua A., Premakumari K.B., Sultana R., Vithya, Savitha. Antioxidant activity and estimation of total phenolic content of Muntingia calabura by colorimetry. Int. J. ChemTech Res., 2010, vol. 2, no. 1, pp. 205–208.
  18. Rahman M.M., Islam M.B., Biswas M., Khurshid Alam A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes, 2015, vol. 8, art. 621.
  19. Quoc L.P.T., Muoi N.V. Ultrasound-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. roots. Bulg. J. Agric. Sci., 2018, vol. 24, no. 2, pp. 229–235.
  20. Cacace J.E., Mazza G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 2003, vol. 59, no. 4, pp. 379–389. doi: 10.1016/s0260-8774(02)00497-1.
  21. Al-Farsi M.A., Lee C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, vol. 108, no. 3, pp. 977–985. doi: 10.1016/j.foodchem.2007.12.009.
  22. Herodež Š.S., Hadolin M., Škerget M., Knez Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem., 2003, vol. 80, no. 2, pp. 275–282. doi: 10.1016/s0308-8146(02)00382-5.
  23. Mandal V., Mandal S.C. Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid. Biochem. Eng. J., 2010, vol. 50, nos. 1–2, pp. 63–70. doi: 10.1016/j.bej.2010.03.005.
  24. Tabaraki R., Heidarizadi E., Benvidi A. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep. Purif. Technol., 2012, vol. 98, pp. 16–23. doi: 10.1016/j.seppur.2012.06.038.
  25. Wang X., Wu Y., Chen G., Yue W., Liang Q., Wu Q. Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrason. Sonochem., 2013, vol. 20, no. 3, pp. 846–854. doi: 10.1016/j.ultsonch.2012.11.007.
  26. Miron T.L., Plaza M., Bahrim G., Ibáñez E., Herrero M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A, 2011, vol. 1218, no. 30, pp. 4918–4927. doi: 10.1016/j.chroma.2010.11.055.
  27. Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 2001, vol. 8, no. 3, pp. 303–313. doi: 10.1016/S1350-4177(01)00071-2.
  28. Aybastıer O., Isık E., Sahin S., Demir C. Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind. Crops Prod., 2013, vol. 44, pp. 558–565. doi: 10.1016/j.indcrop.2012.09.022.
  29. Şahin S., Aybastıer Ö., Işık E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem., 2013, vol. 141, no. 2, pp. 1361–1368. doi: 10.1016/j.foodchem.2013.04.003.
  30. Nguyen M.P. Changes of phytochemical, antioxidant characteristics of Polyscias fruticosa rhizomes during convective and freeze drying. Biosci. Res., 2020, vol. 17, no. 1, pp. 323–326.
  31. Liu Y., Wei S., Liao M. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind. Crops Prod., 2013, vol. 49, pp. 837–843. doi: 10.1016/j.indcrop.2013.07.023.
  32. Chemat S., Lagha A., AitAmar H., Bartels P.V., Chemat F. Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Fragrance J., 2004, vol. 19, no. 3, pp. 188–195. doi: 10.1002/ffj.1339.
  33. Ho S.K., Tan C.P., Thoo Y.Y., Abas F., Ho C.W. Ultrasound-assisted extraction of antioxidants in Misai Kucing (Orthosiphon stamineus). Molecules, 2014, vol. 19, no. 8, pp. 12640–12659. doi: 10.3390/molecules190812640.
  34. Esclapez M.D., García-Pérez J.V., Mulet A., Cárcel J.A. Ultrasound-assisted extraction of na­tural products. Food Eng. Rev., 2011, vol. 3, pp. 108–120. doi: 10.1007/s12393-011-9036-6.

 

The content is available under the license Creative Commons Attribution 4.0 License.