A.M. Khabibrakhmanova a*, E.S. Rabbanieva a**, D.P. Gerasimova b***, O.A. Lodochnikova a****,

L.Z. Latypova a*****, A.R. Kurbangalieva a******

aKazan Federal University, Kazan, 420008 Russia

bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center,

Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *AMHabibrahmanova@kpfu.ru, **EnSRabbanieva@kpfu.ru, ***darya.p_gerasimova@mail.ru,

 ****lod_olga@mail.ru, *****llatypov@kpfu.ru******akurbang@kpfu.ru

Received December 16, 2022; Accepted February 1, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.133-148

For citation: Khabibrakhmanova A.M., Rabbanieva E.S., Gerasimova D.P., Lodochnikova O.A., Latypova L.Z., Kurbangalieva A.R. Oxidation of chiral 2(5H)-furanone bis-thioethers to disulfoxides. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 133–148. doi: 10.26907/2542-064X.2023.1.133-148. (In Russian)

 

Abstract

Novel disulfinyl derivatives based on 3,4-dichloro-2(5H)-furanone, aliphatic dithiols, and monoterpene alcohols were synthesized. Chiral bis-thioethers in the molecules of which the dithiol fragment links two five-membered cycles at C4 atoms were obtained in the reactions of 5(S)-(l-menthyloxy)- and 5(S)-(l-bornyloxy)-2(5H)-furanones with ethane-1,2-dithiol and propane-1,3-dithiol in acetone in basic medium. The action of an excess of m-chloroperoxybenzoic acid (2.0–3.2 equiv.) on bis-thioethers led to the formation of the corresponding mono- and disulfoxides bearing l-menthol or l-borneol fragments at the 5th position of the lactone ring. The methods of column chromatography and fractional recrystallization were used for the isolation of individual products. The structure of the synthesized heterocycles was proved by IR and NMR spectroscopy, and their composition was confirmed by high-resolution mass spectrometry. The molecular structure of the three disulfoxides was characterized by X-ray diffraction analysis.

Keywords: 2(5H)-furanones, aliphatic dithiols, bis-thioethers, disulfoxides, optical activity, X-ray diffraction analysis

Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

The XRD study was carried out under the state assignment to the FRC Kazan Scientific Center, Russian Academy of Sciences.

Figure Captions

Scheme 1. Oxidation reactions of bis-thioethers 14 to sulfoxides.

Fig. 1. 1Н NMR spectra (CDCl3, 400 MHz) of disulfoxides 7b (a) and 7c (b).

Fig. 2. Molecular geometry of disulfoxides 7b (a), 8c (b), and 9c (c) in a crystal.

References

  1. Singh S., Sharma P.K., Kumar N., Dudhe R. Furanone derivatives: Diverse biological activities. Int. J. Pharm. Sci., 2011, vol. 2, no. 3, suppl. 1, pp. S51–S61.
  2. León-Rojas A.F., Urbina-González J.M. Las furan-2[5H]-onas (Δα,β-butenolidas), su preparación e importancia biológica. Av. Quím., 2015, vol. 10, no. 1, pp. 67–78. (In Spanish)
  3. Rossi R., Lessi M., Manzini C., Marianetti G., Bellina F. Synthesis and biological properties of 2(5H)-furanones featuring bromine atoms on the heterocyclic ring  and/or  brominated substituents. Curr. Org. Chem., 2017, vol. 21, no. 11, pp. 964–1018. doi: 10.2174/1385272821666170111151917.
  4. Husain A., Khan S.A., Iram F., Iqbal Md A., Asif M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem., 2019, vol. 171, pp. 66–92. doi: 10.1016/j.ejmech.2019.03.021.
  5. Villamizar-Mogotocoro A.-F., León-Rojas A.-F., Urbina-González J.-M. Δα,β-Butenolides [furan-2(5H)-ones]: Ring construction approaches and biological aspects – A mini-review. Mini-Rev. Org. Chem., 2020, vol. 17, no. 8, pp. 922–945. doi: 10.2174/1570193X17666200220130735.
  6. Yang K., Yang J.-Q., Luo S.-H., Mei W.-J., Lin J.-Y., Zhan J.-Q., Wang Z.-Y. Synthesis of          N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg. Chem., 2021, vol. 107, art. 104518. doi: 10.1016/j.bioorg.2020.104518.
  7. Li X., Li X.-Q., Liu H.-M., Zhou X.-Z., Shao Z.-H. Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing γ-butenolide moiety. Org. Med. Chem. Lett., 2012, vol. 2, art. 26. doi: 10.1186/2191-2858-2-26.
  8. Wei M.-X., Zhang J., Ma F.-L., Li M., Yu J.-Y., Luo W., Li X.-Q. Synthesis and biological activities of dithiocarbamates containing 2(5H)-furanone-piperazine. Eur. J. Med. Chem., 2018, vol. 155, pp. 165–170. doi: 10.1016/j.ejmech.2018.05.056.
  9. Wei M.-X., Yu J.-Y., Liu X.-X., Li X.-Q., Yang J.-H., Zhang M.-W., Yang P.-W., Zhang S.-S., He Y. Synthesis and biological evaluation of novel artemisone-piperazine-tetronamide hybrids. RSC Adv., 2021, vol. 11, no. 30, pp. 18333–18341. doi: 10.1039/d1ra00750e.
  10. Prilezhaeva E.N. Sulfones and sulfoxides in the total synthesis of biologically active natural compounds. Russ. Chem. Rev., 2000, vol. 69, no. 5, pp. 367–408. doi: 10.1070/RC2000v069n05ABEH000561.
  11. Ahmad I., Shagufta. Sulfones: An important class of organic compounds with diverse biological activities. Int. J. Pharm. Pharm. Sci., 2015, vol. 7, no. 3, pp. 19–27.
  12. Salom-Roig X., Bauder C. Recent applications in the use of sulfoxides as chiral auxiliaries for the asymmetric synthesis of natural and biologically active products. Synthesis, 2020, vol. 52, no. 7, pp. 964–978. doi: 10.1055/s-0039-1690803.
  13. Skolia E., Gkizis P.L., Kokotos C.G. Aerobic photocatalysis: Oxidation of sulfides to sulfoxides. ChemPlusChem, 2022, vol. 87, no. 4, art. e202200008. doi: 10.1002/cplu.202200008.
  14. Fernández I., Khiar N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev., 2003, vol. 103, no. 9, pp. 3651–3705. doi: 10.1021/cr990372u.
  15. Boukouvalas J., Albert V. Regiospecific synthesis of Cepanolide, a cancer chemoprotective micronutrient found in green onions. Tetrahedron Lett., 2012, vol. 53, no. 24, pp. 3027–3029. doi: 10.1016/j.tetlet.2012.04.007.
  16. Jin Z., Xu B., Hammond G.B. Green synthesis of vicinal dithioethers and alkenyl thioethers from the reaction of alkynes and thiols in water. Eur. J. Org. Chem., 2010, vol. 2010, no. 1, pp. 168–173. doi: 10.1002/ejoc.200901101.
  17. Pellissier H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, vol. 62, no. 8, pp. 1619–1665. doi: 10.1016/j.tet.2005.10.040.
  18. Kiełbasiński P., Kwiatkowska M., Cierpiał T., Rachwalski M., Leśniak S. The sulfinyl group: Its importance for asymmetric synthesis and biological activity. Phosphorus, Sulfur, Silicon Relat. Elem., 2019, vol. 194, no. 7, pp. 649–653. doi: 10.1080/10426507.2019.1602622.
  19. Sharafutdinov I.S., Trizna E.Y., Baydamshina D.R., Ryzhikova M.N., Sibgatullina R.R., Khabibrakhmanova A.M., Latypova L.Z., Kurbangalieva A.R., Rozhina E.V., Klinger-Stobel M., Fakhrullin R.F., Pletz M.W., Bogachev M.I., Kayumov A.R., Makarewicz O. Antimicrobial effects of sulfonyl derivative of 2(5H)-furanone against planktonic and biofilm associated methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol., 2017, vol. 8, art. 2246. doi: 10.3389/fmicb.2017.02246.
  20. Sulaiman R., Trizna E., Kolesnikova A., Khabibrakhmanova A., Kurbangalieva A., Bogachev M., Kayumov A. Antimicrobial and biofilm-preventing activity of l-borneol possessing 2(5H)-furanone derivative F131 against S. aureus C. albicans mixed cultures. Pathogens, 2023, vol. 12, no. 1, art. 26. doi: 10.3390/pathogens12010026.
  21. Khabibrakhmanova A.M., Rabbanieva E.S., Gerasimova D.P., Islamov D.R., Latypova L.Z., Lodochnikova O.A., Kurbangalieva A.R. Optically active bisthioethers and disulfones derived from furan-2(5H)-one and dithiols: Synthesis and structure. Russ. J. Org. Chem., 2022, vol. 58, no. 8, pp. 1160–1169. doi: 10.1134/S1070428022080127.
  22. Sheldrick G.M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, pt. 1, pp. 3–8. doi: 10.1107/S2053273314026370.
  23. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, pt. 1, pp. 3–8. doi: 10.1107/S2053229614024218.
  24. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, vol. 42, no. 2, pp. 339–341. doi: 10.1107/S0021889808042726.
  25. Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, vol. 65, no. 2, pp. 148–155. doi: 10.1107/S090744490804362X.
  26. Gordon A. Sputnik khimika: Fiziko-khimicheskie svoistva, metodiki, bibliografiya [The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References]. Moscow, Mir, 1976. 541 p. (In Russian)
  27. Sharafutdinov I.S., Ozhegov G.D., Sabirova A.E., Novikova V.V., Lisovskaya S.A., Khabibrakhmanova A.M., Kurbangalieva A.R., Bogachev M.I., Kayumov A.R. Increasing susceptibility of drug-resistant Candida albicans to fluconazole and terbinafine by 2(5H)-furanone derivative. Molecules, 2020, vol. 25, no. 3, art. 642. doi: 10.3390/molecules25030642.
  28. Sharafutdinov I.S., Khabibrakhmanova A.M., Kurbangalieva A.R., Kayumov A.R. Antibacterial agent in form of gel based on gentamycin and 2(5H)-furanone derivative. Patent RF no. 2765470, 2021. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.