R.F. Bakeeva*, S.Yu. Garmonov**, V.D. Osipova***, K.V. Chernyj****, S.Yu. Mamykina*****V.F. Sopin******

Kazan National Research Technological University, Kazan, 420015 Russia

E-mail: *gurf71@mail.ru, **serggar@mail.ru, ***viktoria_31_03@mail.ru,

****kostya12052003@gmail.com, *****fatinia@kstu.ru, ******vlad_sopin24@rambler.ru

Received January 23, 2023; Accepted February 28, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.118-132

For citation: Bakeeva R.F., Garmonov S.Yu., Osipova V.D., Chernyj K.V., Mamykina S.Yu., Sopin V.F. Spectrophotometric determination of nitroxoline in medicines using the response surface methodology. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 118–132. doi: 10.26907/2542-064X.2023.1.118-132. (In Russian)

 

Abstract

It was shown by the conductometric study that the formation of micelles in the cetyltrimethylam­monium bromide (CTAB) – dimethylsulfoxide (DMSO) – water system occurs at higher critical micelle concentrations (CMC) than in the CTAB – water system. The solubilization of nitroxoline in this system upon reaching the CMC was determined by the spectrophotometric method. The Box–Behnken design was used to obtain systems with the highest light absorption of nitroxoline, depending on the CTAB concentration, the acidity of the pH medium, and the proportion of DMSO when searching for the optimal matrix. A sensitive and selective technique suitable for micellar media and spectrophotometric analysis was developed using the response surface methodology for the determination of nitroxoline in medicines.

Keywords: surfactants, cetyltrimethylammonium bromide, spectrophotometry, nitroxoline, response surface methodology, Box–Behnken plans, drugs

Figure Captions

Fig. 1. Conductometric curves for the systems CTAB + H2O (a) and CTAB + DMSO + H2O (b).

Fig. 2. Nitroxoline spectra in water and buffer solutions.

Fig. 3. Absorption spectra of saturated nitroxoline solutions in the CTAB + DMSO (20%) + H2O (80%) (I) system, l = 0.2 cm, 25 °C. The spectra were recorded at CTAB concentrations corresponding to those used to determine CMC.

Fig. 4. Change in the AB intensity of nitroxoline in saturated solutions of the CTAB + DMSO (20%) + H2O (80%) + buffer pH 6.88 (II) system.

Fig. 5. 3D graphs of the dependence of the intensity of the A270 AB (a) on the concentration of CTAB (X1) and the pH of the medium (X2) at aDMSO equal to 0.4 (X3); (b) on the concentration of CTAB (X1) and aDMSO (X3) at the medium pH 7.6 (X2).

Fig. 6. 3D graphs of the dependence of the intensity of the A450 AB on the concentration of CTAB (X1) and aDMSO (X3) at the pH of the medium (X2) equal to: (a) –1, pH 2 and (b) 1, pH 7.6.

Fig. 7. Pareto diagrams of standardized effects of the independent factors on the intensity of A270 (a) and A450aDMSO (L – linear, Q – quadratic effects).

Fig. 8. Determination of optimal conditions using the desirability function for A270 (a) and A450 (b).

References

  1. Strachunskii L.S., Belousov Yu.B., Kozlov S.N. (Eds.) Prakticheskoe rukovodstvo po antiinfektsionnoi khimioterapii [A Practical Guide to Anti-Infective Chemotherapy]. Smolensk, Mezhreg. Assots. Klin. Microbiol. Antimikrob. Khimioter., 2007. 462 p. (In Russian)
  2. Rosen M.J. Surfactants and Interfacial Phenomena. New York, John Wiley & Sons, 2004. 457 p. doi: 10.1002/0471670561.
  3. Abe M., Scamehorn J.F. (Eds.) Mixed Surfactant Systems. CRC Press, 2004. 831 p. doi: 10.1201/9781420031010.
  4. Savvin S.B., Chernova R.K., Shtykov S.N. Poverkhnostno-aktivnye veshchestva [Surfactants]. Moscow, Nauka, 1991. 251 p. (In Russian)
  5. Rusanov A.I. Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv [Micellization in Solutions of Surfactants]. St. Petersburg, Khimiya, 1992. 280 p. (In Russian)
  6. Patil A.S., Pethe A.M. Quality by Design (QbD): A new concept for development of quality pharmaceuticals. Int. J. Pharm. Qual. Assur., 2013, vol. 4, no. 2, pp. 13–19.
  7. Lawrence X.Yu. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm. Res., 2008, vol. 25, no. 4, pp. 781–791. doi: 10.1007/s11095-008-9667-3.
  8. Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandão G.C., da Silva E.G.P., Portugal L.A., dos Reisc P.S., Souza A.S., dos Santos W.N.L. Box–Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta., 2007, vol. 597, no. 2, pp. 179–186. doi: 10.1016/j.aca.2007.07.011.
  9. de Oliveira F.S., Korn M. Spectrophotometric determination of sulphate in automotive fuel ethanol by sequential injection analysis using dimethylsulphonazo(III) reaction. Talanta, 2005, vol. 68, no. 3. pp. 992–999. doi: 10.1016/j.talanta.2005.06.055.
  10. Bakeeva R.F., Garmonov S.Yu., Vakhitova O.E., Sopin V.F. Determination of amine-containing drugs in micellar matrices by spectrophotometry using Box–Behnken Plans. J. Anal. Chem., 2022, vol. 77, no. 6, pp. 688–697. doi: 10.31857/S0044450222060032.
  11. Bakeeva R.F., Vakhitova O.E., Garmonov S.Yu., Sopin V.F. Design of a micellar matrix for the determination of o-phenylenediamine in dosage forms by the spectrophotometric method. Planning and optimization. Zhidk. Krist. Ikh Prakt. Ispol’z., 2022, vol. 22, no. 2, pp. 19–31. doi: 10.18083/LCAppl.2022.2.19. (In Russian)
  12. Bakeeva R.F., Garmonov S.Yu., Karimullina A.A., Sopin V.F. Using the response surface method for the spectrophotometric determination of 4-aminophenol in drugs. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 3, pp. 367–377. doi: 10.26907/2542-064X.2022.3.367-377. (In Russian)
  13. Shtykov S.N. Surfactants in analysis: Progress and development trends. J. Anal. Chem., 2000, vol. 55, no. 7. pp. 608–614. doi: 10.1007/BF02827992.
  14. Adler Yu.P., Markova E.V., Granovskii Yu.V. Planirovanie eksperimenta pri poiske optimal’nykh uslovii [Planning an Experiment in the Search for Optimal Conditions]. Moscow, Nauka, 1976. 279 p. (In Russian)
  15. Box G.E.P., Hunter J.S., Hunter W.G. Statistics for Experimenters. Design, Innovation, and Discovery. New York, Wiley-Interscience, 2005. 672 p.

 

The content is available under the license Creative Commons Attribution 4.0 License.