L.G. Shaidarova*, I.A. Chelnokova**, D.A. Koryakovtseva***, H.C. Budnikov****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *larisashaidarova@mail.ru, **irina.chelnokova@mail.ru,

***koryakovtzeva_darya@mail.ru****Herman.Budnikov@kpfu.ru

Received January 17, 2023; Accepted February 27, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.83-93

For citation: Shaidarova L.G., Chelnokova I.A., Koryakovtseva D.A., Budnikov H.C. Electrode with the electrodeposited gold–bismuth binary system for voltammetric determination of phenylephrine, paracetamol, and caffeine. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 83–93. doi: 10.26907/2542-064X.2023.1.83-93. (In Russian)

 

Abstract

The Au–Bi binary system electrodeposited on the surface of a glassy carbon electrode exhibits catalytic activity during the electrooxidation of phenylephrine, paracetamol, and caffeine that enhances the peak currents and decreases overvoltage in the oxidation of organic compounds. The potential difference between the peaks of oxidation on the modified electrode is 400 mV for phenylephrine and paracetamol and 300 mV for phenylephrine and caffeine, respectively. The possibility of simultaneous voltammetric determination of phenylephrine, paracetamol, and caffeine on the glassy carbon electrode modified by the Au–Bi binary system was established. The calibration curve is linear in the concentration range from 5?10–6 to 5?10–3 M. The developed method was tested in the analysis of combined drugs.

Keywords: voltammetry, modified electrodes, gold–bismuth binary system, electrooxidation, phenylephrine, paracetamol, caffeine

Acknowledgements. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Figure Captions

Fig. 1. Cyclic voltammograms obtained on a glassy carbon electrode with the electrodeposited particles of gold (1), bismuth (2), and binary Bi–Au precipitate (3), with 0.1 М H2SO4 as a background electrolyte.

Fig. 2. Voltammograms obtained on an electrode with the Bi–Au binary precipitate in the absence (1) and presence (2) of phenylephrine (с = 5?10–3 M), with 0.1 М H2SO4 as a background electrolyte (a); graphs showing the dependence of current values on phenylephrine concentration (b) and lg I on lg v (c) during the oxidation of phenylephrine on the electrode with the Bi–Au binary precipitate.

Fig. 3. Differential pulse voltammograms obtained on a Bi–Au glassy carbon electrode in the solution containing ascorbic acid (с = 1.1?10–2 М), phenylephrine (с = 6.0?10–4 M), and caffeine (с = 1.5?10–3 M), with 0.1 М H2SO4 as a background electrolyte.

References

  1. Yagmur S., Ture M., Saglikoglu G., Sadikoglu M., Yilmaz S. The quantitative detection of phenylephrine in pharmaceutical preparations and spiked human urine by voltammetry. Russ. J. Electrochem., 2018, vol. 54, no. 10, pp. 741–746. doi: 10.1134/S1023193518100063.
  2. Desjardins P.J., Berlin R.G. Efficacy of phenylephrine. Br. J. Clin. Pharmacol., 2007, vol. 64, no. 4, pp. 555–556. doi: 10.1111/j.1365-2125.2007.02935.x.
  3. Santos A.M., Silva T.A., Vicentini F.C., Fatibello-Filho О. Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arabian J. Chem., 2020, vol. 13, no. 1, pp. 335–345. doi: 10.1016/j.arabjc.2017.04.012.
  4. Mégarbane B. Intoxication par le paracétamol: quoi de neuf? Méd. Intensive Réa., 2017, vol. 26, no. 5, pp. 383–395. doi: 10.1007/s13546-017-1300-1. (In French)
  5. Glushchenko N.N., Pleteneva T.V., Popkov V.A. Farmatsevticheskaya khimiya [Pharmaceutical Chemistry]. Moscow, Akademiya, 2004. 384 p. (In Russian)
  6. Andreeva E.Yu., Dmitrienko S.G., Zolotov Yu.A.  Methylxanthines:  Properties  and  determination in various objects. Russ. Chem. Rev., 2012, vol. 81, no. 5, pp. 397–414. doi: 10.1070/RC2012v081n05ABEH004220.
  7. Phenylephrine (FS.2.1.0200.18). In: Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii [The State Pharmacopoeia of the Russian Federation]. Vol. 3, ed. XIV. Moscow, 2018, pp. 4971–4975. (In Russian)
  8. Paracetamol (FS.2.1.0154.18). In: Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii [The State Pharmacopoeia of the Russian Federation]. Vol. 3, ed. XIV. Moscow, 2018, pp. 4600–4604. (In Russian)
  9. Caffeine (FS.2.1.0116.18). In: Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii [The State Pharmacopoeia of the Russian Federation]. Vol. 3, ed. XIV. Moscow, 2018, pp. 4158–4162. (In Russian)
  10. Budnikov G.K., Maistrenko V.N., Vyaselev M.R. Osnovy sovremennogo elektrokhimicheskogo analiza [Fundamentals of Modern Electrochemical Analysis]. Moscow, Mir, Binom LZ, 2003. 592 p. (In Russian)
  11. Zhou Q., Zhai H.Y., Pan Y.F. Voltammetric determination of phenylephrine hydrochloride using a multi-walled carbon nanotube-modified carbon paste electrode. R. Soc. Open Sci., 2018, vol. 5, no. 12, art. 181264. doi: 10.1098/rsos.181264.
  12. Shaidarova L.G., Gedmina A.V., Chelnokova I.A., Budnikov G.K. Selective determination of  paracetamol and acetylsalicylic acid on electrode modified with a mixed-valent film of ruthenium oxide-ruthenium cyanide. Russ. J. Appl. Chem., 2011, vol. 84, no. 4, pp. 620–627. doi: 10.1134/S1070427211040112.
  13. Habibi B., Abazari M., Pournaghi-Azar M.H. A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chin. J. Catal., 2012, vol. 33, nos. 11–12, pp. 1783–1790. doi: 10.1016/S1872-2067(11)60438-5.
  14. Shaidarova L.G., Leksina Y.A., Chelnokova I.A., Il'ina M.A., Gedmina A.V., Budnikov H.C. Dual screen-printed electrode modified by gold – palladium binary system for flow-injection amperometric determination of dopamine and ascorbic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 1, pp. 40–53. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.