E.O. Chibirev*, E.K. Konkova**, A.R. Garifzyanov***

Kazan Federal University, Kazan, 420008 Russia

E-mail: *chibirevegor@mail.ru, **redatushared@gmail.com, ***agar@live.ru

Received January 11, 2023; Accepted February 15, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.68-82

For citation: Chibirev E.O., Konkova E.K., Garifzyanov A.R. Assessment of the effect of mineral acids and aluminum on the intensity of spectral lines of rare earth elements in atomic emission spectroscopy of microwave-induced plasma. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 68–82. doi: 10.26907/2542-064X.2023.1.68-82. (In Russian)

Abstract

To obtain reliable results in the quantitative determination of rare earth elements (REE) by atomic emission spectroscopy, it is particularly important to take into account the matrix effects of the macrocomponents contained in the analyzed solutions. Analytes obtained by liquid-phase and autoclave opening of geological samples of REE ores and minerals contain significant amounts of strong mineral acids used as reagents and such macrocomponents of the samples as aluminum (aluminosilicates) and phosphorus (phosphates in apatites). Here, we studied the effects of hydrochloric, nitric, sulfuric, and orthophosphoric acids and aluminum on the relative intensity of the ion analytical lines of La, Ce, Nd, Sm, Gd, Tb, Er, and Yb in atomic emission spectroscopy of the microwave-induced plasma (AES MIP). With an increase in the acid concentration from 0 to 1 mol/L, the relative intensity of the spectral lines of all investigated REE decreased monotonically by 10–20%. The depressing effect of aluminum, which is due to a decrease in the degree of ionization of REE atoms, was much stronger and reached 70%. It was shown that the AES MIP method is not inferior to atomic emission spectroscopy of inductively coupled argon plasma in terms of the detection limits of lanthanum, cerium, gadolinium, and erbium.

Keywords: atomic emission spectroscopy, microwave-induced plasma, rare earth elements, matrix interference, mineral acids, aluminum

Acknowledgements. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Figure Captions

Fig. 1. Effect of the aluminum concentration on the relative intensity of spectral lines of rare earth elements E(II).

Fig. 2. Effect of the phosphoric acid concentration on the relative intensity of spectral lines of rare earth elements E(II).

Fig. 3. Effect of the HNO3, HCl, and H2SO4 concentrations on the relative intensity of La(II) – 394.9 nm.

Fig. 4. Effect of the HNO3, HCl, and H2SO4 concentrations on the relative intensity of Ce(II) – 446.0 nm.

Fig. 5. Effect of the HNO3, HCl, and H2SO4 concentrations on the relative intensity of Nd(II) – 430.4 nm.

Fig. 6. Influence of aluminum on the intensity of atomic and ion lines of rare earth elements with c(Al3+) = 0.28 M. The concentration of the measured metal ions is 2.8·10-4 mol/L.

References

  1. Thakur S.N. Chapter 2 – Atomic emission spectroscopy. In: Singh J.P., Thakur S.N. (Eds.) Laser-Indu­ced Breakdown Spectroscopy. Elsevier, 2020, pp. 23–40. doi: 10.1016/b978-0-12-818829-3.00002-2.
  2. Djingova R., Ivanova J. Determination of rare earth elements in soils and sediments by inductively coupled plasma atomic emission spectrometry after cation-exchange separation. Talanta, 2002, vol. 57, no. 5, pp. 821–829. doi: 10.1016/S0039-9140(02)00126-1.
  3. Fernández-Sánchez M.L. Atomic emission spectrometry | Inductively coupled plasma. In: Worsfold P., Poole C., Townshend A., Miró M. (Eds.) Encyclopedia of Analytical Science. Acad. Press, 2018, pp. 169–176. doi: 10.1016/B978-0-12-409547-2.14542-1.
  4. Olesik J.W. 10.9 – ICP-OES: Inductively coupled plasma-optical emission spectroscopy. In: Brundle C.R., Evans Ch.A., Wilson Sh. (Eds.) Encyclopedia of Materials Characterization. Butterworth-Heinemann, 1992, pp. 633–644. doi: 10.1016/b978-0-08-052360-6.50059-x.
  5. Ganjali M.R., Gupta V.K., Faridbod F., Norouzi P. Chapter 6 – Spectrometric determination of lanthanides series. In: Ganjali M.R., Gupta V.K., Faridbod F., Norouzi P. (Eds.) Lanthanides Series Determination by Various Analytical Methods. Elsevier, 2016, pp. 209–358. doi: 10.1016/B978-0-12-804704-0.00006-2.
  6. Sesi N.N., Hieftje G.M. Studies into interelement matrix effect in inductively coupled plasma spect­rometry. Spectrochim. Acta, Part B, 1996, vol. 51, no. 13, pp. 1601–1628. doi: 10.1016/S0584-8547(96)01560-1.
  7. Pupyshev A.A., Danilova D.A. Developing a model of thermochemical processes for the method of atomic emission spectrometry with inductively coupled plasma. Part 1. Non-spectral matrix interference. Anal. Kontrol’, 2001, no. 2, pp. 112–136. (In Russian)
  8. Mandiwana K.L. Physical interferences by mineral acids in ICP-OES. J. Anal. At. Spectrom., 2000, vol. 15, no. 10, pp. 1405–1407. doi: 10.1039/A910176O.
  9. Pupyshev A.A., Danilova D. A. The use of atomic emission spectroscopy with inductively coupled plasma for the analysis of materials and products of ferrous metallurgy. Anal. Kontrol’, 2007, nos. 2–3, pp. 131–181. (In Russian)
  10. Pupyshev A.A. Spectral interference and their correction in atomic emission spectral analysis. Zavod. Lab. Diagn. Mater., 2019, vol. 81, no. 1(II), pp. 15–32. doi: 10.26896/1028-6861-2019-85-1-II-15-32.
  11. Maeda T., Wagatsuma K. Emission characteristics of high-powered microwave induced plasma optical emission spectrometry by using nitrogen–oxygen mixture gas. Microchem. J., 2004, vol. 76, nos. 1–2, pp. 53–60. doi: 10.1016/j.microc.2003.11.010.
  12. Karlsson S., Sjöberg V., Ogar A. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus). Talanta, 2015, vol. 135, pp. 124–132. doi: 10.1016/j.talanta.2014.12.015.
  13. Jankowski K.J., Reszke E. Microwave Induced Plasma Analytical Spectrometry. R. Soc. Chem., 2011. 264 p. doi: 10.1039/9781849732147.
  14. Jankowski K.J. Atomic emission spectrometry | Microwave plasma sources. In: Worsfold P., Poole C., Townshend A., Miró M. (Eds.) Encyclopedia of Analytical Science. Acad. Press, 2019, pp. 187–193. doi: 10.1016/B978-0-12-409547-2.14378-1.
  15. Jankowski K.J., Dreger M. Study of an effect of easily ionizable elements on the excitation of 35 elements in an Ar-MIP system coupled with solution nebulization. J. Anal. At. Spectrom., 2000, vol. 15, no. 3, pp. 269–274. doi: 10.1039/a906941k.
  16. Fischer P.T., Ellgren A.J. Analysis of rare earth-containing metallurgical samples by inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, Part B, 1983, vol. 38, nos. 1–2, pp. 309–316. doi: 10.1016/0584-8547(83)80129-3.
  17. Zhang Z., Wagatsuma K. Matrix effects of easily ionizable elements and nitric acid in high-power microwave-induced nitrogen plasma atomic emission spectrometry. Spectrochim. Acta, Part B, 2002, vol. 57, no. 8, pp. 1247–1257. doi: 10.1016/s0584-8547(02)00049-6.
  18. Wall F. Rare earth elements. In: Alderton D., Elias S.A. (Eds.) Encyclopedia of Geology. Acad. Press, 2020, pp. 680–693. doi: 10.1016/b978-0-08-102908-4.00101-6.
  19. Davris P., Balomenos E., Panias D., Paspaliaris I. Chapter 12 – Leaching rare earth elements from bauxite residue using Brønsted acidic ionic liquids. In: De Lima I.B., Filho W.L. (Eds.) Rare Earths Industry. Elsevier, 2016, pp. 183–197. doi: 10.1016/B978-0-12-802328-0.00012-7.
  20. Demol J., Ho E., Senanayake G. Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 °C. Hydrometallurgy, 2018, vol. 179, pp. 254–267. doi: 10.1016/j.hydromet.2018.06.002.
  21. Bandara A.M.T.S., Senanayake G. Dissolution of calcium, phosphate, fluoride and rare earth elements (REEs) from a disc of natural fluorapatite mineral (FAP) in perchloric, hydrochloric, nitric, sulphuric and phosphoric acid solutions: A kinetic model and comparative batch leaching of major and minor elements from FAP and RE-FAP concentrate. Hydrometallurgy, 2018, vol. 184, pp. 218–236. doi: 10.1016/j.hydromet.2018.09.002.

 

The content is available under the license Creative Commons Attribution 4.0 License.