D.P. Gerasimova, L.V. Frantsuzova, R.R. Fayzullin, O.A. Lodochnikova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center,

Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *darya.p_gerasimova@mail.ru, **lubovfrancuzova48@mail.ru,

***robert.fayzullin@gmail.com, ****lod_olga@mail.ru

Received December 23, 2022; Accepted February 13, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.49-57

For citation: Gerasimova D.P., Frantsuzova L.V., Fayzullin R.R., Lodochnikova O.A. Theoretical study of the association of aryl derivatives of lactic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 49–57. doi: 10.26907/2542-064X.2023.1.49-57. (In Russian)

 

Abstract

A theoretical study of the association of phenyl and ortho-substituted aryl derivatives of lactic acid was carried out. Two variants of hydrogen-bonded associates in the gas phase were calculated: non-classical, actually found in the crystals, and simulated classical dimers. The energy advantage of classical dimers and the non-equivalence of diastereotopic electron lone pairs at the carbonyl oxygen atom were shown.

Keywords: hydrogen-bonded dimer, carboxylic acids, electron lone pairs

Acknowledgements. This study was supported by the Russian Science Foundation (project no. 22-13-00284).

Figure Captions

Scheme 1. Structural formulas of the studied compounds.

Scheme 2. General layout of a) non-classical (actual) and b) classical (simulated) dimers.

Scheme 3. pro-E and pro-Z stereodescriptors of diastereotopic atoms and electron lone pairs.

Fig. 1. a) Classical dimers of compounds 13 illustrated by the example of compound 1; b) classical dimer of compound 4.

Fig. 2. a) Non-classical dimer of compound 1; b) non-classical dimer of compound 2; c) non-classical dimer of compounds 3 and 4 illustrated by the example of compound 3.

References

  1. Bredikhin A.A., Fayzullin R.R., Gubaidullin A.T., Bredikhina Z.A. Intermolecular hydrogen bonding in alpha-hydroxy carboxylic acids crystals: Connectivity, synthons, supramolecular motifs. Crystals, 2022, vol. 12, no. 10, art. 1479. doi: 10.3390/cryst12101479.
  2. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision A.03. Wallingford, Gaussian, Inc., 2016.
  3. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865.
  4. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1997, vol. 78, no. 7, p. 1396. doi: 10.1103/PhysRevLett.78.1396.
  5. Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A. 6-31G* basis set for third-row atoms. J. Comp. Chem., 2001, vol. 22, no. 9, pp. 976–984. doi: 10.1002/jcc.1058.
  6. Bader R.F.W. Atoms in Molecules: A Quantum Theory. New York, Oxford Univ. Press, 1990. xviii, 438 p.
  7. Keith T.A. AIMAll (Version 19.10.12). Available at: https://aim.tkgristmill.com/.
  8. Lodochnikova O.A., Startseva V.A., Nikitina L.E., Bodrov A.V., Klimovitskii A.E., Klimovitskii E.N., Litvinov I.A. When two symmetrically independent molecules must be different: “Crystallization-induced diastereomerization” of chiral pinanyl sulfone. CrystEngComm, 2014, vol. 16, no. 20, pp. 4314–4321.
  9. Lodochnikova O.A., Gerasimova D.P., Plemenkov V.V. From classical to supramolecular dynamic stereochemistry: Double crystallization-induced diastereomerization of thiazine sulfonamide. Chirality, 2021, vol. 33, no. 7, pp. 409–420. doi: 10.1002/chir.23316.
  10. Frantsuzova L.V., Gerasimova D.P., Lodochnikova O.A. Stereochemical features of reproducing a stable dimeric motif in the crystals of BODIPY derivatives in transitioning from an achiral to a chiral substitute in meso-position. J. Struct. Chem., 2022, vol. 63, no. 12, pp. 1913–1922. doi: 10.1134/S0022476622120010.
  11. Gerasimova D.P., Gilfanov I.R., Pavelyev R.S., Nikitina L.E., Lodochnikova O.A. Formation of a symmetric secondary packing motif as the reason of the crystallization of enantiopure mentanyl sulfone with two independent molecules. J. Struct. Chem., 2023, vol. 64, no. 1, pp. 69–81. doi: 10.1134/S0022476623010043.

 

The content is available under the license Creative Commons Attribution 4.0 License.