G.R. Nizameeva a,b*, I.R. Nizameev a**, M.K. Kadirov a***

aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center,

Russian Academy of Sciences, Kazan, 420088 Russia

bKazan National Research Technological University, Kazan, 420015 Russia

E-mail: *guliya.riv@gmail.com, **irek.rash@gmail.com, ***kamaka59@gmail.com

Received December 23, 2022; Accepted January 25, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.23-36

For citation: Nizameeva G.R., Nizameev I.R., Kadirov M.K. Determination of a transparent conductive composite coating’s conductivity type based on oriented platinum networks. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 23–36. doi: 10.26907/2542-064X.2023.1.23-36. (In Russian)

 

Abstract

This paper considers a method for determining the type of electrical conductivity of a previously developed composite transparent conductive coating based on oriented platinum networks embedded in the polymer matrix. Many researchers have recently been grappling with finding electrically conductive transparent coatings for smart devices with touch screens, particularly an alternative to the massively used indium tin oxide (ITO) having some disadvantages, the most serious of which is the lack of coating flexibility. The latter can be overcome by using various metal-polymer composites with high transparency in the optical range and low surface resistance. However, one should be aware that the type of conductivity depends on both the polymer matrix and the metal framework of a composite. This defines its electrical properties. Therefore, it is important to correctly identify and measure the electrical conductivity. The developed method is based on studying the temperature dependence of the surface resistance in the material.

Keywords: conductive coating, optical transparency, metal networks, oriented systems, platinum, poly(3,4-ethylenedioxythiophene) polystyrenesulfonate, polymer matrix, conductivity

Acknowledgements. This study was performed under the state assignment to the FRC Kazan Scientific Center, Russian Academy of Sciences.

Figure Captions

Fig. 1. Oriented networks on glass – optically transparent conductive coating.

Fig. 2. Structural formula of PEDOT.

Fig. 3 Structural formula of the PEDOT:PSS interpolymer complex.

Fig. 4. Unit for measuring the temperature dependence of the surface resistance of the optically transparent conductive coating.

Fig. 5. Four-probe measuring of the surface resistance.

Fig. 6. Temperature dependence of the surface resistance of the studied coating based on platinum nanonetworks.

References

  1. Ginley D.S., Perkins J.D. Transparent conductors. In: D.S. Ginley (Ed.) Handbook of Transparent Conductors. New York, Heidelberg, Dordrecht, London, Springer, 2011, pp. 1–26.
  2. Wager J.F., Keszler D.A., Presley R.E. Transparent Electronics. New York, Springer, 2008. vii, 212 p.
  3. Stsiapanau A.A., Smirnov A.G. Structure, morphology, and electrical properties of transparent nanomeshy aluminium films. Dokl. Beloruss. Gos. Univ. Inf. Radioelektron., 2012, no. 5, pp. 21–27. (In Russian)
  4. Hotovy J., Hüpkes J., Böttler W., Marins E., Spiess L., Kups T., Smirnov V., Hotovy I., Kováč J. Sputtered ITO for application in thin-film silicon solar cells: Relationship between structural and electrical properties. Appl. Surf. Sci., 2013, vol. 269, pp. 81–87. doi: 10.1016/j.apsusc.2012.10.180.
  5. López-Naranjo E.J., González-Ortiz L.J., Apátiga L.M., Rivera-Muñoz E.M., Manzano-Ramírez A. Transparent electrodes: A review of the use of carbon-based nanomaterials. J. Nanomater., 2016, vol. 2016, art. 4928365. doi: 10.1155/2016/4928365.
  6. Yang Ch.-W., Park J.-W. The cohesive crack and buckle delamination resistances of indium tin oxide (ITO) films on polymeric substrates with ductile metal interlayers. Surf. Coat. Technol., 2010, vol. 204, no. 16–17, pp. 2761–2766. doi: 10.1016/j.surfcoat.2010.02.033.
  7. Dodabalapur A. Organic and polymer transistors for electronics. Mater. Today, 2006, vol. 9, no. 4, pp. 24–30. doi: 10.1016/S1369-7021(06)71444-4.
  8. Lee J., Lee P., Lee H., Lee D., Lee S.S., Ko S.H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012, vol. 4, no. 20, pp. 6408–6414. doi: 10.1039/C2NR31254A.
  9. Park S., Vosguerichian M., Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, vol. 5, no. 5, pp. 1727–1752. doi: 10.1039/C3NR33560G.
  10. Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for grapheme. Nature, 2012, vol. 490, no. 7419, pp. 192–200. doi: 10.1038/nature11458.
  11. Ji Q., Zhang Y., Zhang Y., Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev., 2015, vol. 44, no. 9, pp. 2587–2602. doi: 10.1039/C4CS00258J.
  12. Ho M.D., Liu Y., Dong D., Zhao Y., Cheng W. Fractal gold nanoframework for highly stretchable transparent strain-insensitive conductors. Nano Lett., 2018, vol. 18, no. 6, pp. 3593–3599. doi: 10.1021/acs.nanolett.8b00694.
  13. He K., Jiang Y., Wang T., Liu Z., Wang M., Pan L., Chen X. Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, vol. 3, no. 4, art. e57. doi: 10.1002/agt2.57.
  14. Shang L., Zhao Y., Kong X.Y., Shi R., Waterhouse G.I., Wen L., Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, vol. 78, art. 105375. doi: 10.1016/j.nanoen.2020.105375.
  15. Sofiah A.G.N., Samykano M., Kadirgama K., Mohan R.V., Lah N.A.C. Metallic nanowires:     Mechanical properties – theory and experiment. Appl. Mater. Today, 2018, vol. 11, pp. 320–337. doi: 10.1016/j.apmt.2018.03.004.
  16. Vossen J.L. Transparent conducting films. J. Vac. Sci. Technol., 1976, vol. 13, no. 1, p. 116. doi: 10.1116/1.568875.
  17. Chopra K.L., Major S., Pandya D.K. Transparent conductors – a status review. Thin Solid Films, 1983, vol. 102, no. 1, pp. 1-46. doi: 10.1016/0040-6090(83)90256-0.
  18. Fraser D.B., Cook H.D. Highly conductive, transparent films of sputtered In2−xSnxO3−y. J. Electrochem. Soc., 1972, vol. 119, no. 10, art. 1368. doi: 10.1149/1.2403999.
  19. Haacke G. Transparent electrode properties of cadmium stannate. Appl. Phys. Lett., 1976, vol. 28, no. 10, pp. 622–623. doi: 10.1063/1.88589.
  20. Haacke G. Evaluation of cadmium stannate films for solar heat collectors. Appl. Phys. Lett., 1977, vol. 30, no. 8, pp. 380–381. doi: 10.1063/1.89439.
  21. Krishnakumar V., Ramamurthi K., Kumaravel R., Santhakumar K. Preparation of cadmium stannate films by spray pyrolysis technique. Curr. Appl. Phys., 2009, vol. 9, no. 2, pp. 467–471. doi: 10.1016/j.cap.2008.04.006.
  22. Stepanov A. L. Plasmon nano-optics on metal surface. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2010, vol. 152, no. 3, pp. 148–156. (In Russian)
  23. Aranovich J., Ortiz A., Bube R.H. Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications. J. Vac. Sci. Technol., 1979, vol. 16, no. 4, pp. 994–1003. doi: 10.1116/1.570167.
  24. Minami T. New n-type transparent conducting oxides. MRS Bull., 2000, vol. 25, no. 8, pp. 38–44. doi: 10.1557/mrs2000.149.
  25. Minami T., Nanto H., Takata S. Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys., 1984, vol. 23, no. 5A, art. L280. doi: 10.1143/JJAP.23.L280.
  26. Nizameeva G.R., Nizameev I.R., Nefedev E.S., Kadirov M.K. Optical transparency and conductivity of oriented platinum nanonetworks on a glass. J. Phys.: Conf. Ser., 2020, vol. 1695, no. 1, art. 012007. doi: 10.1088/1742-6596/1695/1/012007.
  27. Nizameev I., Nizameeva G., Kadirov M. Transparent conductive layer based on oriented platinum networks. ChemistrySelect, 2019, vol. 4, no. 46, pp. 13564–13568. doi: 10.1002/slct.201904293.
  28. Nizameev I.R., Nizameeva G.R., Kadirov M.K. Optically transparent conductive layer based       on oriented metal networks. J. Phys.: Conf. Ser., 2019, vol. 1410, no. 1, art. 012038. doi: 10.1088/1742-6596/1410/1/012038.
  29. Kadirov M.K., Nizameev I.R., Zakharova L.Y. Platinum nanoscale lattice on a graphite surface using cetyltrimethylammonium bromide hemi- and precylindrical micelle templates. J. Phys. Chem. C, 2012, vol. 116, no. 20, pp. 11326–11335. doi: 10.1021/jp211826x.
  30. Kadirov M.K., Litvinov A.I., Nizameev I.R., Zakharova L.Y. Adsorption and premicellar aggregation of CTAB molecules and fabrication of nanosized platinum lattice on the glass surface. J. Phys. Chem. C, 2014, vol. 118, no. 34, pp. 19785–19794. doi: 10.1021/jp503988a.
  31. Nizameev I.R., Muscat A.J., Motyakin M.V., Grishin M.V., Zakharova L.Y., Nizameeva G.R., Kadirov M.K. Surfactant templated oriented 1-D nanoscale platinum and palladium systems on a modified silicon surface. Nano-Struct. Nano-Objects, 2019, vol. 17, pp. 1–6. doi: 10.1016/j.nanoso.2018.10.004.
  32. Altunin K.K. Giant light enhancement in metal nanoclusters and nanoaggregates in nanocomposite coating of solar panels. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2010, vol. 152, no. 3, pp. 19–26. (In Russian)
  33. Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly (3,4-ethyle­nedioxythiophene). J. Mater. Chem., 2005, vol. 15, no. 21, pp. 2077–2088. doi: 10.1039/B417803N.
  34. Pochtennyi A.E., Misevich A.V., Dolgii V.K. Temperature dependence of the conductivity of PEDOT: PSS-metal nanoparticles composite films. Tr. Beloruss. Gos. Tekhnol. Univ. Ser. 3: Fiz.-Mat. Nauki Inf., 2011, no. 6, pp. 60–62. (In Russian)
  35. Aleshin A.N., Williams S.R., Heeger A.J. Transport properties of poly (3,4-ethylenedioxythio­phene)/poly (styrenesulfonate). Synth. Met., 1998, vol. 94, no. 2, pp. 173–177. doi: 10.1016/S0379-6779(97)04167-2.
  36. Olivare A., Cosme I., Mansurova S., Kosarev A., Martinez H.E. Study of electrical conductivity of PEDOT:PSS at temperatures > 300 K for hybrid photovoltaic applications. Proc. 2015 12th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2015, pp. 1–3. doi: 10.1109/ICEEE.2015.7357906.
  37. Peng Y., He Z., Diyaf A., Ivaturi A., Zhang Z., Liang C., Wilson J.I. Manipulating hybrid structures of polymer/a-Si for thin film solar cells. Appl. Phys. Lett., 2014, vol. 104, no. 10, art. 103903. doi: 10.1063/1.4867474.
  38. Hwan J.H., Ho K.D., Kim S.C., Bae T.S., Bum C.K., Yoon R.S. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles. Appl. Phys. Lett., 2013, vol. 102, no. 18, art. 183902. doi: 10.1063/1.4804377.

 

The content is available under the license Creative Commons Attribution 4.0 License.