R.R. Amirov a*, A.N. Solodov a**, R.M. Gataullina a***, J.R. Shaiymova a****, E.A. Burilova b*****,

A.G. Kiiamov a******, Y. Tyan a*******, R.G. Batulin a********, M.A. Cherosov a*********, D.A. Tayurskii a**********

aKazan Federal University, Kazan, 420008 Russia

bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center,

Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *ramirov@kpfu.ru, **sanya.solodiv@live.com, ***ramigataullina1999@gmail.com,

****julia_shayimova@mail.ru, *****burilovajen07@mail.ru, ******Airatphd@gmail.com,

*******Rockland1922@hotmail.com, ********tokamak@yandex.ru,

*********Mcherosov@gmail.com**********Dmitry.Tayurskii@kpfu.ru

Received December 20, 2022; Accepted January 23, 2023

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2023.1.5-22

For citation: Amirov R.R., Solodov A.N., Gataullina R.M., Shaiymova J.R., Burilova E.A., Kiiamov A.G., Tyan Y., Batulin R.G., Cherosov M.A., Taurskii D.A. Magnetic and structural properties of iron oxide nanoparticles produced by thermal decomposition of precursors in solution. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 5–22. doi: 10.26907/2542-064X.2023.1.5-22. (In Russian)

 

Abstract

In this study, the method of thermal decomposition of iron(III) oleate at different ratios of oleic acid and octadecene-1 was used to obtain iron oxide nanoparticles (IONPs). Transmission electron microscopy (TEM) showed that they all had a spherical shape and a diameter of 8–9 nm, and FT-IR spectroscopy revealed the presence of oleate shells in them, which ensure the stability of the colloidal solutions of these nanoparticles in nonpolar solvents. For all synthesized IONPs, the sizes of the crystalline core formed by iron oxides were determined using X-ray diffraction analysis and magnetometry. The sizes of the oleate protective shells were established by comparison with the TEM data. These values were in agreement with those from the literature.

Keywords: iron oxide nanoparticles, Langevin model, transmission electron microscopy, powder X-ray diffraction analysis, magnetometry

Acknowledgements. IONPs synthesis and TEM studies were funded by the Russian Science Foundation (project no. 22-23-00348).

X-ray diffraction analysis and magnetometry measurements were supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Figure Captions

Fig. 1. Characterization of the synthesized IONPs (nos. 1–3): ac) TEM images of IONPs (nos. 1–3) with a 40-nm scale bar. The insets show the corresponding particle size distribution (scale to 20 nm) obtained by statistical analysis of approximately 3500 particles; d) IR spectra.

Fig. 2. Measured powder diffraction patterns of the studied samples of series 1 (black line), 2 (red line), and 3 (green line). The short vertical blue lines indicate the positions of the Fe3O4 iron oxide reflections.

Fig. 3. ac) Dependence of the magnetization of samples nos. 1–3 on the external field at room temperature (black circles) and its approximation within the extended Langevin model (red line). df) Size distribution for samples nos. 1–3 obtained from M–H dependences.

References

  1. Xie W., Guo Z., Gao F., Gao Q., Wang D., Liaw B.S., Cai Q., Sun X., Wang X., Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, vol. 8, no. 12, pp. 3284–3307. doi: 10.7150/thno.25220.
  2. Wu W., Wu Z., Yu T., Jiang C., Kim W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, vol. 16, no. 2, art. 023501. doi: 10.1088/1468-6996/16/2/023501.
  3. Na H.B., Song I.C., Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater., 2009, vol. 21, no. 21, pp. 2133–2148. doi: 10.1002/adma.200802366.
  4. Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110. doi: 10.1021/cr068445e.
  5. Solodov A.N., Shayimova J.R., Burilova E.A., Shurtakova D.V., Zhuravleva Yu.I., Cherosov M.A., Tian Y., Kiiamov A.G., Amirov R.R. Understanding the nucleation and growth of iron oxide nanoparticle formation by a “heating-up” process: An NMR relaxation study. J. Phys. Chem., C, 2021, vol. 125, no. 38, pp. 20980–20992. doi: 10.1021/acs.jpcc.1c05172.
  6. Tang Y., Flesch R.C.C., Jin T., Gao Y., He M. Effect of nanoparticle shape on therapeutic temperature distribution during magnetic hyperthermia. J. Phys. D: Appl. Phys., 2021, vol. 54, no. 16, art. 165401. doi: 10.1088/1361-6463/abdb0e.
  7. Shaterabadi Z., Nabiyouni G., Soleymani M. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater. Sci. Eng., C, 2020, vol. 117, art. 111274. doi: 10.1016/j.msec.2020.111274.
  8. Gonzales-Weimuller M., Zeisberger M., Krishnan K.M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater., 2009, vol. 321, no. 13, pp. 1947–1950. doi: 10.1016/j.jmmm.2008.12.017.
  9. Lim J., Yeap S.P., Che H.X., Low S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett., 2013, vol. 8, no. 1, art. 381. doi: 10.1186/1556-276X-8-381.
  10. Langford J. X-ray diffraction procedures for polycrystalline and amorphous materials by H.P. Klug and L.E. Alexander. J. Appl. Crystallogr., 1975, vol. 8, no. 5, pp. 573–574. doi: 10.1107/S0021889875011399.
  11. Holzwarth U., Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnol., 2011, vol. 6, no. 9, art. 534. doi: 10.1038/nnano.2011.145.
  12. Wen X., Yang J., He B., Gu Z. Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr. Appl. Phys., 2008, vol. 8, no. 5, pp. 535–541. doi: 10.1016/j.cap.2007.09.003.
  13. Bronstein L.M., Huang X., Retrum J., Schmucker A., Pink M., Stein B.D., Dragnea B. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater., 2007, vol. 19, no. 15, pp. 3624–3632. doi: 10.1021/cm062948j.
  14. Solodov A.N., Shayimova J.R., Burilova E.A., Amirov R.R. Polyethyleneimine-modified iron oxide nanoparticles: Their synthesis and state in water and in solutions of ligands. Colloid Polym. Sci., 2018, vol. 296, no. 12, pp. 1983–1993. doi: 10.1007/s00396-018-4425-5.
  15. Kraus W., Nolze G. POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr., 1996, vol. 29, no. 3, pp. 301–303. doi: 10.1107/S0021889895014920.
  16. Kim W., Suh C.-Y., Cho S.-W., Roh K.-M., Kwon H., Song K., Shon I.-J. A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta, 2012, vol. 94, pp. 348–352. doi: 10.1016/j.talanta.2012.03.001.
  17. Park J., Lee E., Hwang N.-M., Kang M., Kim S.C., Hwang Y., Park J.-G., Noh H.-J., Kim J.-Y., Park J.-H., Hyeon T. One‐nanometer‐scale size‐controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem., Int. Ed., 2005, vol. 117, no. 19, pp. 2932–2937. doi: 10.1002/anie.200461665.
  18. Cao S.-W., Zhu Y.-J., Chang J. Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New J. Chem., 2008, vol. 32, no. 9, pp. 1526–1530. doi: 10.1039/B719436F.
  19. Kittel C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev., 1946, vol. 70, nos. 11–12, pp. 965–971. doi: 10.1103/PhysRev.70.965.
  20. Bean C., Livingston J.D. Superparamagnetism. J. Appl. Phys., 1959, vol. 30, no. 4, pp. S120–S129. doi: 10.1063/1.2185850.
  21. Gossuin Y., Gillis P., Hocq A., Vuong Q.L., Roch A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2009, vol. 1, no. 3, pp. 299–310. doi: 10.1002/wnan.36.
  22. Henrard D., Vuong Q.L., Delangre S., Valentini X., Nonclercq D., Gonon M.F., Gossuin Y. Monitoring of superparamagnetic particle sizes in the Langevin law regime. J. Nanomater., 2019, vol. 2019, art. 6409210. doi: 10.1155/2019/6409210.
  23. Lévy M., Wilhelm C., Devaud M., Levitz P., Gazeau F. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol. Imaging, 2012, vol. 7, no. 4, pp. 373–383. doi: 10.1002/cmmi.504.
  24. Chantrell R., Popplewell J., Charles S. Measurements of particle size distribution parameters in ferrofluids. IEEE Trans. Magn., 1978, vol. 14, no. 5, pp. 975–977. doi: 10.1109/TMAG.1978.1059918.
  25. Vaishnava P., Senaratne U., Buc E.C., Naik R., Naik V.M., Tsoi G.M., Wenger L.E. Magnetic properties of γ-Fe2O3 nanoparticles incorporated in a polystyrene resin matrix. Phys. Rev. B, 2007, vol. 76, no. 2, art. 024413. doi: 10.1103/PhysRevB.76.024413.
  26. Goya G.F., Berquó T.S., Fonseca F.C. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys., 2003, vol. 94, no. 5, pp. 3520–3528. doi: 10.1063/1.1599959.
  27. Nadeem K., Krenn H., Traussnig T., Würschum R., Szabó D.V., Letofsky-Papst I. Spin-glass freezing of maghemite nanoparticles prepared by microwave plasma synthesis. J. Appl. Phys., 2012, vol. 111, no. 11, art. 113911. doi: 10.1063/1.4724348.
  28. Lévy M., Gazeau F., Bacri J.C., Wilhelm C., Devaud M. Modeling magnetic nanoparticle dipole-dipole interactions inside living cells. Phys. Rev. B, 2011, vol. 84, no. 7, art. 075480. doi: 10.1103/PhysRevB.84.075480.
  29. Ramos Guivar J.A., Bustamante A., Flores J., Mejía Santillan M., Osorio A.M., Martínez A.I., De Los Santos Valladares L., Barnes C.H.W. Mössbauer study of intermediate superparamagnetic relaxation of maghemite (γ-Fe2O3) nanoparticles. Hyperfine Interact., 2014, vol. 224, no. 1, pp. 89–97. doi: 10.1007/s10751-013-0864-z.
  30. Shankar A., Chand M., Basheed G.A., Thakur S., Pant R.P. Low temperature FMR investigations on double surfactant water based ferrofluid. J. Magn. Magn. Mater., 2015, vol. 374, pp. 696–702.
  31. Basini M., Orlando T., Arosio P., Casula M.F., Espa D., Murgia S., Sangregorio C., Innocenti C., Lascialfari A. Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study. J. Chem. Phys., 2017, vol. 146, no. 3, art. 034703. doi: 10.1063/1.4973979.

 

The content is available under the license Creative Commons Attribution 4.0 License.