F.A. Mouraviev*, T.V. Kropotova**, B.I. Gareev***, G.A. Batalin****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *fedor.mouraviev@kpfu.ru, **Tatyana.Kropotova@kpfu.ru,

***bulat@gareev.net, ****g@batalin.com

Received August 23, 2022


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2022.4.590-605

For citation: Mouraviev F.A., Kropotova T.V., Gareev B.I., Batalin G.A. Paleosols from the Kazanian red beds of the Sentyak section, Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 4, pp. 590–605. doi: 10.26907/2542-064X.2022.4.590-605. (In Russian)

Abstract

This article summarizes the results of a comprehensive study of paleosol profiles in the Lower Kama Region – from the Kazanian reference section near Sentyak and from the reference section of the boundary deposits of the Ufimian and Kazanian in Elabuga. The paleosol profiles in the Kazanian deposits were identified, and their features were analyzed to reconstruct the paleoclimatic and paleolandscape conditions. The following three types of paleosols were singled out, differing from one another in their degree of development and pedogenic features: Protosols and moderately and strongly developed Calcisols. The latter proved to be characteristic only of the Lower Kazanian deposits. Based on the obtained sedimentological and paleontological characteristics of the host rocks, the fluviolacustrine depositional settings were reconstructed. The pedofeatures of the paleosols (slickensides, carbonate nodules) indicate a seasonally warm climate. The mean annual precipitation inferred from the geochemical indices of the paleosol profiles is 539 and 476 mm/yr for the Lower and Upper Kazanian paleosols, respectively, which, along with the pedofeatures, is indicative of a subhumid/semiarid climate. The oxygen isotopic composition of the carbonate nodules from the paleosols reflects some aridization of the climate in the Early Kazanian (29.7? SMOW δ18O) compared to the Ufimian (18.7? SMOW δ18O) and Late Kazanian (22.3? SMOW δ18O) times. The lack of gley features argues for the automorphic character of the paleosols, while their small thickness, truncated upper horizons, and weak development in the Upper Kazanian deposits suggest that the rate of sedimentation exceeded the rate of soil formation.

Keywords: paleosol, carbonate nodules, Kazanian, Ufimian, geochemical indices, carbon and oxygen isotopes

Figure Captions

Fig. 1. Kazanian deposits of the Sentyak section: a – geographical location of the section in European Russia; b – geological map of the Lower Kama Region, the Sentyak and Elabuga sections marked by white stripes, c – general view of the Sentyak section, Upper Kazanian deposits.

Fig. 2. The sequence of the Kazanian deposits of the Sentyak section with the identified paleosol types (see the text for details). Stratigraphic subdivisions are given according to [9].

Fig. 3. Type 1 paleosol: a – general view, pick length 63 cm; b – vertical geochemical profile and histograms of the grain size composition. Sentyak section, Upper Kazanian. The sampling levels marked by yellow circles.

Fig. 4. Type 2 paleosol: a – general view; b – vertical geochemical profile and histograms of the grain size composition. Sentyak section, Lower Kazanian. See Fig. 3 for the legend.

Fig. 5. Type 3 paleosol: a – general view, hammer length 30 cm, b – vertical geochemical profile and histograms of the grain size composition. Sentyak section, Upper Kazanian. See Fig. 3 for the legend.

Fig. 6. Micromorphology of the paleosols and pedogenic nodules, Type 2: a – silty-clayey intraped mass with detrital sand grains and ferruginous nodules; b – carbonate nodule with micritic matrix and secondary calcite around the clots.

Fig. 7. Ternary plots of the chemical composition of the paleosols from the Sentyak and Elabuga sections: a – Al2O3–CaO+Na2O–K2O plot, UCC – upper continental crust composition, gray region indicates the range of composition of normal igneous rocks, according to [19]; b –SiO2/10–CaO+MgO–Na2O+K2O plot, by [20]; c – CaO–Na2O–K2O plot, by [18]. Figure legend: A – andesites, Gr – granodiorites, G – granites, R – recycled sediments; the paleosols marked by circles, non-pedogenic rocks marked by squares.

Fig. 8. Distribution of δ13C and δ18O values in pedogenic carbonates from the Sentyak (P2kz1 and P2kz2) and Elabuga (P1u) sections (see the text for details).

References

  1. Naugolnykh S.V. Paleosols of the Permian and Early Triassic. In: Klimat v epokhi krupnykh biosfernykh perestroek [Climate in the Epochs of Major Biospheric Transformations]. Semikhatov M.A., Chumakov N.M. (Eds.). Moscow, Nauka, 2004, pp. 221–229. (In Russian)
  2. Naugolnykh S.V. Kazanian and Tatarian plants of the Permian period. In: Larochkina I.A. (Ed.) Geologicheskie pamyatniki prirody Respubliki Tatarstan [Geological Heritage of the Republic of Tatarstan]. Kazan, Akvarel'–Art, 2007, pp. 236–254. (In Russian)
  3. Inozemtsev S.A., Naugolnykh S.V., Yakimenko E.Yu. Upper Permian paleosols developed from limestone in the middle reaches of the Volga River: Morphology and genesis. Eurasian Soil Sci., 2011, vol. 44, no. 6, pp. 604–617. doi: 10.1134/S1064229311060068.
  4. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Khasanova N.M., Nizamutdinov N.M., Trifonov A.A. Red paleosols in the key sections of the Middle and Upper Permian of the Kazan Volga region and their paleoclimatic significance. Paleontol. J., 2015, vol. 49, no. 10, pp. 1150–1159. doi: 10.1134/S0031030115110064.
  5. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Gareev B.I., Batalin G.A., Urazaeva M.N., Kropotova N.V., Vybornova I.B. Paleogeography of accumulation of the Middle-Upper Permian red mudstones in the Kazan Volga Region. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 4, pp. 548–568. (In Russian)
  6. Mouraviev F.A., Silantiev V.V., Gareev B.I., Batalin G.A., Vybornova I.B. Paleosols from the Urzhumian (Middle Permian) reference section, Kazan Volga region, Russia. Int. Multidiscip. Sci. GeoConf. Surv. Geol. Min. Ecol. Manage., SGEM, 2018, vol. 18, no. 1.1, pp. 387–394.
  7. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Eskin A.A., Kropotova T.V. Paleosols and host rocks from the Middle–Upper Permian reference section of the Kazan Volga region, Russia: A case study. Palaeoworld, 2020, vol. 29, no. 2, pp. 405–425. doi: 10.1016/j.palwor.2019.05.004.
  8. Silantiev V.V., Zharkov I.Ya., Sungatullin R.Kh., Khassanov R.R. Mezhdunarodnyi simpozium “Verkhnepermskie stratotipy Povolzh'ya”. Putevoditel' geologicheskoi ekskursii [International Symposium “Upper Permian Stratotypes of the Volga Region.” A Geological Excursion Guidebook]. Kazan, Izd. Kazan. Univ., 1998. 79 p. (In Russian)
  9. Nurgaliev D.K., Silantiev V.V., Nikolaeva S.V. (Eds.) Type and Reference Sections of the Middle and Upper Permian of the Volga and Kama River Regions. A Field Guidebook of XVIII Int. Congr. on Carboniferous and Permian. Kazan, Kazan Univ. Press, 2015. 208 p.
  10. Sementovskii Yu.V. Usloviya obrazovaniya mestorozhdenii mineral'nogo syr'ya v pozdnepermskuyu epokhu na vostoke Russkoi platformy [Conditions for the Formation of Mineral Deposits during the Late Permian in the East of the Russian Platform]. Kazan, Tatar. Kn. Izd., 1973. 256 p. (In Russian)
  11. Retallack G.J. Paleosols and applications. In: Reinhardt J., Sigleo W.R. (Eds.) Field Recognition of Paleosols. Geol. Soc. Am., Spec. Pap., 1988, art. 216, pp. 1–21. doi: 10.1130/SPE216-p1.
  12. Mack G.H., James W.C., Monger H.C. Classification of paleosols. Geol. Soc. Am. Bull., 1993, vol. 105, no. 2, pp. 129–136. doi: 10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2.
  13. Retallack G.J. A pedotype approach to latest Cretaceous and earliest Tertiary paleosols in eastern Montana. Geol. Soc. Am. Bull., 1994, vol. 106, no. 11, pp. 1377–1397. doi: 10.1130/0016-7606(1994)106<1377:APATLC>2.3.CO;2.
  14. Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, vol. 299, pp. 715–717. doi: 10.1038/299715a0.
  15. Sheldon N., Retallack G., Tanaka S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. J. Geol., 2002, vol. 110, no. 6, pp. 687–696. doi: 10.1086/342865.
  16. Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev., 2009, vol. 95, nos. 1–2, pp. 1–52. doi: 10.1016/j.earscirev.2009.03.004.
  17. Folk R.L. Petrology of Sedimentary Rocks. Austin, Tex., Hemphill Publ. Co., 1980. 184 p.
  18. Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, vol. 23, no. 10, pp. 921–924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
  19. Letnikova E.F., Proshenkin A.L., Veshcheva S.V., Kuznetsov A.B. Neoproterozoic terrigenous deposits of the Tuva-Mongolian massif: Geochemical correlation, sourcelands, and geodynamic reconstruction. Russ. Geol. Geophys., 2011, vol. 52, no. 12, pp. 1662–1671. doi: 10.1016/j.rgg.2011.11.013.
  20. Bhatia M.R. Plate tectonics and geochemiсal composition of sandstones. J. Geol., 1983, vol. 91, no. 6, pp. 611–627. doi: 10.1086/628815.
  21. Faure G. Osnovy izotopnoi geologii [Principles of Isotope Geology]. Moscow, Mir, 1989. 590 p. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.