R.A. Kayumova∗, I.Z. Mukhamedovaa∗∗, B.F. Tazyukovb∗∗∗

aKazan State University of Architecture and Engineering, Kazan, 420043 Russia

bKazan Federal University, Kazan, 420008 Russia

E-mail: Kayumov@rambler.ru∗∗Muhamedova-inzilija@mail.ru, ∗∗∗Bulat.Tazioukov@kpfu.ru

Received April 12, 2022

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2022.2-3.194-205

For citation: Kayumov R.A., Mukhamedova I.Z., Tazyukov B.F. Modeling of fiberglass degradation process under stresses and alkaline environment. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 2–3, pp. 194–205. doi: 10.26907/2541-7746.2022.2-3.194-205. (In Russian)

 

 

Abstract

The constitutive relations for fiberglass were obtained. New methods were developed to analyze its behavior as microdamage accumulates and under the exposure to an aggressive alkaline environment. A finite element model was built to assess the stress-strain state of a fiberglass panel for predicting its durability in response to stresses and an alkaline environment. The convergence of the solutions was studied depending on the number of finite elements and the time step. The behavior of a fiberglass panel was analyzed with and without considering its deformations. The results show that the damage accumulated in a fiberglass panel must be taken into account to improve its durability.

Keywords: fiberglass, technique, finite element model, durability, alkaline environment, damage parameter, numerical experiment

Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

References

  1. Seredina O.S. Management of culvert corrosion in the USA. Vestn. Volgogr. Arkhit.-Stroit. Univ. Ser. Stroit. Arkhit., 2012, no. 27, pp. 106–110. (In Russian)
  2. Elsayed T., Haggag H., El Hashimy A., Hass A. Behavior of slabs reinforced using square GFRP rebars. Izv. Kazan. Gos. Arkhit.-Stroit. Univ., 2010, no. 1, pp. 78–88.
  3. Umanskii A.M., Bekker A.T. Prospects of composite reinforcement. Vestn. Inzh. Shk. Dal’nevost. Fed. Univ., 2012, no. 2, pp. 7–13. (In Russian)
  4. Ptukhina I.S., Turkebaev A.B., Tleukhanov D.S., Bizhanov N.Zh., Dalabaeva A.E., Dalabaev A.S. Efficiency of innovative composite materials in construction. Stroit. Unikal’nykh Zdanii Sooruzh., 2014, no. 9, pp. 84–96. (In Russian)
  5. Yazdanbakhsh A., Bank L.C., Chen C. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Constr. Build. Mater., 2016, vol. 121, pp. 278–284. doi: 10.1016/j.conbuildmat.2016.05.165.
  6. Park J.S., Lim A.R., Kim J., Lee J.Y. Bond performance of fiber reinforced polymer rebars in different casting positions. Polym. Compos., 2016, vol. 37, no. 7, pp. 2098–2108. doi: 10.1002/pc.23388.
  7. Staroverov V.D., Baroev R.V., Tsurupa A.A., Krishtalevich A.K. Fiber-reinforced polymer rebar: Problems of application. Vestn. Grazhdanskikh Inzh., 2015, no. 3, pp. 171–178. (In Russian)
  8. Ustinov V.P., Ustinov B.V. A study on the physical and mechanical characteristics of composite polymers (CP). Izv. Vyssh. Uchebn. Zaved. Stroit., 2009, nos. 11–12, pp. 118–125. (In Russian)
  9. Dronov A.V., Drokin S.V., Frolov N.V. Experimental investigation of fiberglass-reinforced plastic rebar embedded in concrete. Prom. Grazhdanskoe Striot., 2016, no. 11, pp. 80–83. (In Russian)
  10. Mikhailov K.V. Prospects of using non-metal rebar in prestressed concrete structures. Beton Zhelezobeton, 2003, no. 5, pp. 29–30. (In Russian)
  11. Vlasov V.M., Bertov V.M., Dolgachev A.D., Donov A.V., Lugovoi A.N. Using concrete beams reinforced with steel and glass fiber rebar. Izv. VNIIG im. B.E. Vedeneeva, 2005, vol. 244, pp. 34–37. (In Russian)
  12. Avdeeva A., Shlykova I., Antonova M., Barabanschikov Y., Belyaeva S. Reinforcement of concrete structures by fiberglass rods. Matec Web Conf., 2016, vol. 53, art. 01006, pp. 1–5. doi: 10.1051/matecconf/20165301006.
  13. Kuz’mina A.Yu., Pyzh’yanova D.V., Salov A.S. Adding modern rebar structures for efficient construction. Problemy stroitel’nogo kompleksa Rossii: Materialy XIX Mezhdunar. nauch.-tekhn. konf. [Problems of Russian Construction Sector: Proc. XIX Int. Sci.-Tekh. Conf.]. Ufa, Ufim. Gos. Neft. Tekh. Univ., 2015, pp. 106–110. (In Russian)
  14. Ostroukh A.V., Nedoseko I.V., Surkova N.E., Fattakhov M.M., Nuruev Y.E., Salov A.S. Automated information-analytical system for dispatching control of transportation concrete products. Int. J. Appl. Eng. Res., 2015, vol. 10, no. 19, pp. 40063–40067.
  15. Kayumov R.A., Sharafutdinova A.A. About an estimation of operational durability of building designs from fiberglass. Izv. Kazan. Gos. Arkhit.-Stroit. Univ., 2017, no. 2, pp. 114–123. (In Russian)
  16. Blaznov A.N., Volkov Yu.P., Lugovoi A.N., Savin V.F. Predicting the rupture strength of fiberglass rebar. Mekh. Kompoz. Mater. Konstr., 2003, vol. 9, no. 4, pp. 579–592. (In Russian)
  17. Blaznov A.N., Petrov M.G., Russkikh G.I., Savin V.F. Prediction of structural strength of unidirectionally reinforced fiberglass rods. Mekh. Kompoz. Mater. Konstr., 2007, vol. 13, no. 1, pp. 97–112. (In Russian)
  18. Blaznov A.N., Volkov Yu.P., Lugovoi A.N., Savin V.F. Tests of long-term strength of composite cores. Zavod. Lab. Diagn. Mater., 2006, vol. 72, no. 2, pp. 44–52. (In Russian)
  19. Savin V.F., Lugovoi A.N., Volkov Yu.P., Blaznov A.N. Buckling as a method for determining the mechanical properties of materials. Zavod. Lab. Diagn. Mater., 2006, vol. 72, no. 1, pp. 55–58. (In Russian)
  20. Savin V.F., Lugovoi A.N., Blaznov A.N., Lugovoi A.N., Blaznov A.N., Volkov Yu.P., Khe A.I. A study of the mechanical properties of fiberglass rods by buckling. Mekh. Kompoz. Mater. Konstr., 2004, no. 4, pp. 499–516. (In Russian)
  21. Startsev O.V., Blaznov A.N., Petrov M.G., Atyasova E.V. A life study of polymer composite materials under static loads. Vse Mater. Entsikl. Sprav., 2019, no. 6, pp. 9–20. (In Russian)
  22. Lebedev M.P., Startsev O.V., Kychkin A.K. The effects of aggressive environments on the mechanical properties of basalt plastics. Heliyon, 2020, vol. 6, no. 3, art. e03481, pp. 1–9. doi: 10.1016/j.heliyon.2020.e03481.
  23. Kuznetsova L.G. Increasing the durability of fiberglass rebar. Beton Zhelezobeton, 1973, no. 3, pp. 30–31. (In Russian)
  24. Rozental’ N.K. Corrosion resistance of polymer composites in the alkaline environment of concrete. Beton Zhelezobeton, 2002, no. 3, pp. 20–23. (In Russian)
  25. Moshchanskii N.A. About the durability of fiberglass rebar in concrete. Beton Zhelezobeton, 1965, no. 9, pp. 33–34. (In Russian)
  26. Blaznov A.N., Savin V.F., Krasnov A.A. Predicting the strength of composite rods in alkaline environment. Yuzhn.-Sib. Nauchn. Vestn., 2014, vol. 4, no. 8, pp. 12–14. (In Russian)
  27. Kuzina T.V., Medvedeva L.Yu., Chizhevskii V.V. Durability of fiberglass rebar in multilayered building envelopes. Korroz.: Mater., Zashch., 2005, no. 1, pp. 41–43. (In Russian)
  28. Ustinov V.P., Petrov M.G., Savin V.F., Ustinov B.V. Predicting the durability of fiber-glass rebar in triple-layer wall panels. Vestn. Sib. Gos. Univ. Putei Soobshch., 2002, no. 4, pp. 115–123. (In Russian)
  29. Sawpan M.A. Effects of alkaline conditioning and temperature on the properties of glass fiber polymer composite rebar. Polym. Compos., 2016, vol. 37, no. 11, pp. 3181–3190. doi: 10.1002/pc.23516.
  30. Vereshchagin A.L., Zharinov Yu.B., Markova A.V., Savin V.F. Corrosive destruction of stressed glass-plastic rods. Mekh. Kompoz. Mater. Konstr., 2007, vol. 17, no. 3, pp. 432–451. (In Russian)
  31. Markova A.V., Savin V.F., Zharinov Yu.B., Blaznov A.N. Testing stressed rods from polymer composites for corrosion resistance. Zavod. Lab. Diagn. Mater., 2010, vol. 76, no. 11, pp. 56–59. (In Russian)
  32. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic aging. Dokl. Phys. Chem., 2014, vol. 456, pt. 1, pp. 77–81. doi: 10.1134/S0012501614050054.
  33. Kablov E.N., Startsev O.V. Climatic aging of aviation polymer composite materials: I. Influence of significant factors. Russ. Metall. (Metally), 2020, vol. 2020, no. 4, pp. 364–372. doi: 10.1134/S0036029520040102.
  34. Rabotnov Yu.N. Polzuchest’ elementov konstruktsii [Creep of Structural Elements]. Moscow, Nauka, 1965. 725 p. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.