A.G. Egorov , A.N. Nuriev∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: aegorov0@gmail.com∗∗nuriev_an@mail.ru

Received July 29, 2022

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2022.2-3.170-180

For citation: Egorov A.G., Nuriev A.N. Cruising speed of a cylindrical wing performing small translational-rotational oscillations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 2–3, pp. 170–180. doi: 10.26907/2541-7746.2022.2-3.170-180. (In Russian)

 

Abstract

This work considers the propulsive motion of a flapping wing of a circular cross section. The problem of harmonic translational-rotational oscillations of the wing with an arbitrary phase shift in a viscous incompressible fluid, the motion of which is described by the non-stationary Navier–Stokes equation, is handled. An analytical solution of the problem is obtained in the first two terms by using the method of successive asymptotic expansions for the case of small oscillation amplitudes. It is shown that the nonlinear interaction of time harmonics of translational and rotational oscillations creates secondary flows that make the wing to move in the direction perpendicular to the axis of translational oscillations. For the cruising motion regime, when the average hydrodynamic force acting on the wing is equal to zero, the dependences of the average speed on the parameters of dimensionless oscillation are found.

Keywords: flapping wing, harmonic oscillations, cruising speed, Navier–Stokes equation, asymptotic analysis

Acknowledgments. This study was supported by the Russian Science Foundation (project no. 22-79-10033).

References

  1. Prandtl L. Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben. In: v. Kármán T., Levi-Civita T. (Hrsg.) Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922). Berlin, Heidelberg, Springer, 1924, S. 18–33. doi: 10.1007/978-3-662-00280-3 2. (In German)
  2. Birnbaum W. Der Schlagflügelpropeller und die kleinen Schwingungen elastisch befestigter Tragflügel. Z. Flugtech. Motorluftschiffahrt, 1924, Bd. 15, H. 11–12, S. 128–134. (In German)
  3. Keldysh M.V., Lavrent’ev M.A. On the theory of the oscillating wing. Tekh. Zametki, 1935, no. 45: Collection of articles by the General Theoretical Group at Central Aerohydrodynamic Institute, pp. 48–52. (In Russian)
  4. Theodorsen T. General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Rep. no. 496. Washington, Supt. Doc., 1935. 23 p.
  5. Nekrasov A.I. Teoriya kryla v nestatsionarnom potoke [Wing Theory in Unsteady Flow]. Moscow, Izd. Akad. Nauk SSSR, 1947. 258 p. (In Russian)
  6. Sedov L.I. Ploskie zadachi gidrodinamiki i aerodinamiki [Flat Problems of Hydrodynamics and Aerodynamics]. Moscow, Nauka, 1966. 448 p. (In Russian)
  7. Golubev V.V. Lektsii po teorii kryla [Lectures on the Theory of Wing]. Moscow, Leningrad, Gos. Izd. Tekh.-Teor. Lit., 1949. 480 p. (In Russian)
  8. Golubev V.V. On some problems of the theory of a flapping wing. Uch. Zap. Mosk. Gos. Univ., 1951, no. 152, pp. 3–12. (In Russian)
  9. Schlichting H. Berechnung ebener periodischer Grenzschichtströmungen. Phys. Z., 1932, Bd. 33, S. 327–335. (In German)
  10. Holtsmark J., Johnsen I., Sikkeland T., Skavlem S. Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am., 1954, vol. 26, no. 1, pp. 26–39. doi: 10.1121/1.1907285.
  11. Riley N. The steady streaming induced by a vibrating cylinder. J. Fluid Mech., 1975, vol. 68, no. 4, pp. 801–812. doi: 10.1017/S0022112075001243.
  12. Wang Ch.-Y. On high-frequency oscillatory viscous flows. J. Fluid Mech., 1968, vol. 32, no. 1, pp. 55–68. doi: 10.1017/S0022112068000583.
  13. Nuriev A.N., Egorov A.G. Asymptotic investigation of hydrodynamic forces acting on an oscillating cylinder at finite streaming Reynolds numbers. Lobachevskii J. Math., 2019, vol. 40, no. 6, pp. 794–801. doi: 10.1134/S1995080219060180.
  14. Riley N., Watson E.J. Eccentric oscillations of a circular cylinder in a viscous fluid. Mathematika, 1993, vol. 40, no. 2, pp. 187–202. doi: 10.1112/S0025579300006975.
  15. Nuriev A.N., Egorov A.G. Asymptotic theory of a flapping wing of a circular cross-section. J. Fluid Mech., 2022, vol. 941, art. A23, pp. 1–28. doi: 10.1017/jfm.2022.287.

 

The content is available under the license Creative Commons Attribution 4.0 License.