R.Z. Dautov

Kazan Federal University, Kazan, 420008 Russia

E-mail:  rafail.dautov@gmail.com

Received February 1, 2022


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2022.1.68-84

For citation: Dautov R.Z. An efficient numerical method for determining trapped modes in acoustic waveguides. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie  Nauki,  2022,  vol.  164,  no.  1,  pp.  68–84.  doi:  10.26907/2541-7746.2022.1.68-84. (In Russian)

Abstract

An efficient numerical method for determining all trapped modes of the Helmholtz equation based on the finite element method and exact nonlocal boundary conditions is proposed. An infinite two-dimensional channel with parallel walls at infinity, which may contain obstacles of arbitrary shape, is considered. It is assumed that the frequencies of the trapped modes lie below a certain threshold value. The discrete problem is an algebraic eigenvalue problem for symmetric positive definite sparse matrices, one of which depends nonlinearly on the spectral parameter. A fast iterative method for solving such problems is introduced. The results of the numerical calculations are presented.

Keywords: acoustic waveguide, trapped mode, discrete and continuous spectrum, finite element method, nonlinear spectral problem

Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (“PRIORITY-2030”).

References

  1. Callan M.A., Linton C.M., Evans D.V. Trapped modes in two-dimensional waveguides. J. Fluid Mech., 1991, vol. 229, pp. 51–64. doi: 10.1017/S0022112091002938.
  2. Evans D.V., Linton C.M., Ursell F. Trapped mode frequencies embedded in the continuous spectrum. Q. J. Mech. Appl. Math., 1993, vol. 46, no. 2, pp. 253–274. doi: 10.1093/qjmam/46.2.253.
  3. Evans D.V., Porter R. Trapping and near-trapping by arrays of cylinders in waves. J. Eng. Math., 1999, vol. 35, pp. 149–179. doi: 10.1023/A:1004358725444.
  4. Exner P., Seba P. Bound states in curved quantum waveguides.  J. Math. Phys., 1989, vol. 30, no. 11, pp. 2574–2580. doi: 10.1063/1.528538.
  5. Postnova  J.,  Craster  R.V.   Trapped   modes   in   elastic   plates,   ocean   and   quantum waveguides. Wave Motion, 2008, vol.  45, no. 4, pp. 565–579. doi: 10.1016/j.wavemoti.2007.11.002.
  6. Caspers F., Scholz T. Measurement of trapped modes in perforated waveguides. Part. Accel., 1989, vol. 51, pp. 251–262.
  7. Evans D.V., Levitin M., Vassiliev D. Existence theorems for trapped modes.  J. Fluid Mech., 1994, vol. 261, pp. 21–31. doi: 10.1017/S0022112094000236.
  8. Linton C.M., McIver M., McIver P., Ratcliffe K., Zhang J. Trapped modes for off-centre structures in guides. Wave Motion, 2002, vol. 36, no. 1, pp. 67–85. doi: 10.1016/S0165-2125(02)00006-9.
  9. Linton C.M., McIver P. Embedded trapped modes in water waves and acoustics. Wave Motion, 2007, vol. 45, nos. 1–2, pp. 16–29. doi: 10.1016/j.wavemoti.2007.04.009.
  10. Nazarov S.A. Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains In: Maz'ya V. (Ed.) Sobolev Spaces in Mathematics II. International Mathematical Series. Vol. 9. New York, Springer, 2009, pp. 261–309. doi: 10.1007/978-0-387-85650-6_12.
  11. Nazarov S.A. Variational and asymptotic methods for finding eigenvalues below the con- tinuous spectrum threshold. Sib. Math. J., 2010, vol. 51, no. 5, pp. 866–878. doi: 10.1007/s11202-010-0087-3.
  12. Evans D.V., Linton C.M. Trapped modes in open channels. J. Fluid Mech., 1991, vol. 225, pp. 153–175. doi: 10.1017/S0022112091002008.
  13. McIver M., Linton C.M., McIver P., Zhang J., Porter R. Embedded trapped modes for obstacles in two-dimensional waveguides. Q. J. Mech. Appl. Math., 2001, vol. 54, no. 2, pp. 273–293. doi: 10.1093/qjmam/54.2.273.
  14. Sargent C.V., Mestel A.J. Trapped modes of the Helmholtz equation in infinite waveguides with wall indentations and circular obstacles. IMA J. Appl. Math., 2019, vol. 84, no. 2, pp. 312–344. doi: 10.1093/imamat/hxy060.
  15. Levitin M., Marletta M. A simple method of calculating eigenvalues and resonances in do- mains with infinite regular ends. Proc. R. Soc. Edinburgh, Sect. A: Math., 2008, vol. 138, no. 5, pp. 1043–1065. doi: 10.1017/S0308210506001144.
  16. Keller J.B., Givoli D. Exact non-reflecting boundary conditions. J. Comput. Phys., 1989, vol. 82, no. 1, pp. 172–192. doi: 10.1016/0021-9991(89)90041-7.
  17. Givoli D. Non-reflecting boundary conditions. J. Comput. Phys., 1991, vol. 94, no. 1, pp. 1–29. doi: 10.1016/0021-9991(91)90135-8.
  18. Dautov R.Z., Karchevskii E.M. On a spectral problem of the theory of dielectric wave- guides. Comput. Math. Math. Phys., 1999, vol. 39, no. 8, pp. 1293–1299.
  19. Dautov R.Z.,  Karchevskii E.M. Existence and properties of solutions to the spectral problem of the dielectric waveguide theory. Comput. Math. Math. Phys., 2000, vol. 40, no. 8, pp. 1200–1213.
  20. Dautov R.Z., Karchevskii E.M., Kornilov G.P. A numerical method for finding dispersion curves and guided waves of optical waveguides. Comput. Math. Math. Phys., 2005, vol. 45, no. 12, pp. 2119–2134.
  21. Kress R. Linear Integral Equations. New York, Springer, 1999. XIV, 367 p.
  22. Solov'ev S.I. Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Its Appl., 2006, vol. 415, no. 1, pp. 210–229. doi: 10.1016/j.laa.2005.03.034.
  23. Dautov R.Z., Lyashko A.D., Solov'ev S.I. The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly. Russ. J. Numer. Anal. Math. Modell., 1994, vol. 9, no. 5, pp. 417–427. doi: 10.1515/rnam.1994.9.5.417.
  24. Dyakonov E.G. Optimization in Solving Elliptic Problems. CRC Press, 1996. 590 p. doi: 10.1201/9781351075213.


The content is available under the license Creative Commons Attribution 4.0 License.