T.V. Rogova*, I.S. Sautkin**, G.A. Shaikhutdinova***

Kazan Federal University, Kazan, 420008 Russia

E-mail: *tatiana.rogova@kpfu.ru, **sautkin.ilia@gmail.com, ***gshaykhu@gmail.com

Received January 25, 2022


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2022.1.76-93

For citation: Rogova T.V., Sautkin I.S., Shaikhutdinova G.A. Testing hypotheses of plant community productivity dependence on species and functional diversity. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 1, pp. 76–93. doi: 10.26907/2542-064X.2022.1.76-93. (In Russian)

Abstract

In this article, we tested two hypotheses about the dependence of primary aboveground biomass on community-weighted mean functional traits of dominant plant species (mass ratio hypothesis) and on functional diversity (niche complementarity hypothesis). The vegetation cover of the area under study consists of grassland communities and forest understory communities. The material analyzed comprised the above-ground biomass of plants. The following functional traits of leaves were measured: area (LA), dry mass (LDM), specific leaf area (SLA), and their community weighted means (CWM). Functional diversity was numerically expressed using the indices of functional richness (Fric), evenness (Feve), and divergence (Fdiv). The testing of the biomass correlation hypothesis revealed a significant positive relationship between the biomass of grassland communities and the CWM values of the LA and SLA traits. The testing of the niche complementarity hypothesis showed no statistically significant relationships between the biomass and functional diversity indices for both grassland and forest communities. The indices of functional diversity of the forest understory communities had markedly more pronounced positive relationships with the layer biomass. The mass ratio hypothesis best explains the relationship between the biomass and CWM of the grassland traits, while the niche complementarity hypothesis elucidates the relationship between the biomass and the functional diversity of plants in the forest communities.

Keywords: functional diversity, mass ratio hypothesis, niche complementarity hypothesis, LA, LDM, SLA, CWM

Figure Captions

Fig. 1. Relationship between the biomass and CWM traits of the communities under study: LA, LDM, SLA. Key: ▲ – grassland communities, – forest communities.

Fig. 2. Correlation between the biomass and the indices of functional diversity: Fric, Feve, Fdiv. Key: ▲ – grassland communities, – forest communities.

References

  1. Daily G.C., Polasky S., Goldstein J., Kareiva P.M., Mooney H.A., Pejchar L., Ricketts T.H., Salzman J., Shallenberger R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ., 2009, vol. 7, no. 1, pp. 21–28. doi: 10.1890/080025.
  2. Perrings C., Naeem S., Ahrestani F.S., Bunker D.E., Burkill P., Canziani G., Elmqvist T., Fuhrman J.A., Jaksic F.M., Kawabata Z., Kinzig A., Mace G.M., Mooney H., Prieur-Richard A.-H., Tschirhart J., Weisser W. Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Front. Ecol. Environ., 2011, vol. 9, no. 9, pp. 512–520. doi: 10.1890/100212.
  3. Díaz S., Fargione J., Chapin III F.S., Tilman D. Biodiversity loss threatens human well-being. PLoS Biol., 2006, vol. 4, no. 8, art. e277, pp. 1300–1305. doi: 10.1371/journal.pbio.0040277.
  4. Mace G.M., Norris K., Fitter A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol., 2012, vol. 27, no. 1, pp. 19–26. doi: 10.1016/j.tree.2011.08.006.
  5. Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwani A., Mace G.M., Tilman D., Wardle D.A., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava D.S., Naeem S. Biodiversity loss and its impact on humanity. Nature, 2012, vol. 486, no. 7401, pp. 59–67. doi: 10.1038/nature11148.
  6. Vasilevich V.I. Functional diversity of plant communities. Bot. Zh., 2016, vol. 101, no. 7, pp. 776–795. doi: 10.1134/S0006813616070024. (In Russian)
  7. Díaz S., Quétier F., Cáceres D.M., Trainor S.F., Pérez-Harguindeguy N., Bret-Harte M.S., Finegan B., Peña-Claros M., Poorter L. Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature's benefits to society. Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 3, pp. 895–902. doi: 10.1073/pnas.1017993108.
  8. Grime J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol., 1998, vol. 86, no. 6, pp. 902–910. doi: 10.1046/j.1365-2745.1998.00306.x.
  9. Garnier E., Cortez J., Billès G., Navas M.-L., Roumet C., Debussche M., Laurent G., Blanchard A., Aubry D., Bellmann A., Neill C., Toussaint J.-P. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, vol. 85, no. 9, pp. 2630–2637. doi: 10.1890/03-0799.
  10. Violle C., Navas M.L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. Let the concept of trait be functional! Oikos, 2007, vol. 116, no. 5, pp. 882–892. doi: 10.1111/j.0030-1299.2007.15559.x.
  11. Casanoves F., Pla L., Di Rienzo J.A., Díaz S. FDiversity: A software package for the integrated analysis of functional diversity. Methods Ecol. Evol., 2011, vol. 2, no. 3, pp. 233–237. doi: 10.1111/j.2041-210X.2010.00082.x.
  12. Akhmetzhanova A.A., Onipchenko V.G., El'kanova M.Kh., Stogova, A.V., Tekeev D.K. Changes in ecological-morphological parameters of alpine plant leaves upon application of mineral nutrients. Biol. Bull. Rev., 2012, vol. 2, no. 1, pp. 1–12. doi: 10.1134/S207908641201001X.
  13. Tilman D. The ecological consequences of changes in biodiversity: A search for general prin­ciples. Ecology, 1999, vol. 80, no. 5, pp. 1455–1474. doi: 10.1890/0012-9658(1999)080[1455: TECOCI]2.0.CO;2.
  14. Cardinale B.J., Wright J.P., Cadotte M.W., Carroll I.T., Hector A., Srivastava D.S., Loreau M., Weis J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 46, pp. 18123–18128. doi: 10.1073/pnas.0709069104.
  15. Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 2013, vol. 61, no. 3, pp. 167–234. doi: 10.1071/BT12225.
  16. Poorter L., Wright S.J., Paz H., Ackerly D.D., Condit R., Ibarra-Manríquez G., Harms K.E., Licona J.C., Martínez-Ramos M., Mazer S.J., Muller-Landau H.C., Peña-Claros M., Webb C.O., Wright I.J. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 2008, vol. 89, no. 7, pp. 1908–1920. doi: 10.1890/07-0207.1.
  17. Wright S.J., Kitajima K., Kraft N.J.B., Reich P.B., Wright I.J., Bunker D.E., Condit R., Dalling J.W., Davies S.J., Díaz S., Engelbrecht B.M.J., Harms K.E., Hubbell S.P., Marks C.O., Ruiz-Jaen M.C., Salvador C.M., Zanne A.E. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology, 2010, vol. 91, no. 12, pp. 3664–3674. doi: 10.1890/09-2335.1.
  18. Elumeeva T.G., Zhelezova S.D., Cherednichenko O.V. Leaf area of meadow plants under regimes of mowing and protection in the Central Forest Nature Reserve. Raznoobrazie Rastit. Mira, 2017, no. 4, pp. 39–42. doi: 10.22281/2307-4353-2017-4-39-42. (In Russian)
  19. Onipchenko V.G., Rozhin A.O., Smirnov V.E., Akhmetzhanova A.A., Elumeeva T.G., Khubieva O.P., Dudova K.V., Soudzilovskaia N.A., Cornelissen J.H.C. Do patterns of intra-specific variability and community weighted-means of leaf traits correspond? An example from alpine plants. Bot. Pac., 2020, vol. 9, no. 1, pp. 53–61. doi: 10.17581/BP.2020.09109.
  20. Villéger S., Mason N.W.H., Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008, vol. 89, no. 8, pp. 2290–2301. doi: 10.1890/07-1206.1.
  21. Mouchet M.A., Villéger S., Mason N.W.H., Mouillot D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol., 2010, vol. 24, no. 4, pp. 867–876. doi: 10.1111/j.1365-2435.2010.01695.x.
  22. Laliberté E., Legendre P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 2010, vol. 91, no. 1, pp. 299–305. doi: 10.1890/08-2244.1.
  23. Tichý L. JUICE, software for vegetation classification. J. Veg. Sci., 2002, vol. 13, no. 3, pp. 451–453. doi: 10.1111/j.1654-1103.2002.tb02069.x.
  24. Mason N.W.H., Mouillot D., Lee W.G., Wilson J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 2005, vol. 111, no. 1, pp. 112–118. doi: 10.1111/j.0030-1299.2005.13886.x.
  25. Zhang Q., Buyantuev A., Li F.Y., Jiang L., Niu J., Ding Y., Kang S., Ma W. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol., 2017, vol. 7, no. 5, pp. 1605–1615. doi: 10.1002/ece3.2778.
  26. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available at: https://www.R-project.org/.
  27. Laliberté E., Legendre P., Shipley B., Laliberté M.E. Package 'FD': Measuring functional diversity from multiple traits, and other tools for functional ecology, 2014. 29 p. Available at: https://mran.microsoft.com/snapshot/2014-11-17/web/packages/FD/FD.pdf.
  28. Dudova K.V., Ataballyev G.G., Akhmetzhanova A.A., Gulov D.M., Dudov S.V., Elumeeva T.G., Kipkeev A.M., Logvinenko O.A., Semenova R.B., Smirnov V.E., Tekeev D.K., Salpagarov M.S., Onipchenko V.G. Functional diversity of alpine plant communities: A case study of plant height. Biol. Bull. Rev., 2019, vol. 10, no. 5, pp. 464–474. doi: 10.1134/S2079086420050023.

The content is available under the license Creative Commons Attribution 4.0 License.