Yu.P. Perevedentsev*, K.M. Shantalinsky**, N.V. Ismagilov***, V.V. Guryanov****, A.A. Nikolaev*****, T.R. Auhadeev******

Kazan Federal University, Kazan, 420008 Russia

E-mail: *Yuri.Perevedentsev@kpfu.ru, **kshantal@kpfu.ru, ***NVIsmagilov@kpfu.ru, ****Vladimir.Guryanov@kpfu.ru, *****Aleksandr.Nikolaev@kpfu.ru, ******TRAuhadeev@kpfu.ru

Received January 19, 2021


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.4.626-642

For citation: Perevedentsev Yu.P., Shantalinsky K.M., Ismagilov N.V., Guryanov V.V., Nikolaev A.A., Auhadeev T.R. Thermal regime in the troposphere, stratosphere, and mesosphere of the northern polar zone in 1979–2019. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 4, pp. 626–642. doi: 10.26907/2542-064X.2021.4.626-642. (In Russian)


Abstract

Changes of the thermal regime in the troposphere, stratosphere, and mesosphere of the northern polar zone (68–90? N) during 1979–2019 were studied using the data on average monthly air temperatures at the nodes of a regular geographical grid of 1? × 1? on 51 isobaric surfaces (ERA5 reanalysis). The mean and standard deviations, normalized anomalies and linear temperature trends, low-frequency components up to an altitude of 80 km were calculated. The obtained statistical characteristics were analyzed to assess the intensity of climate warming in the Arctic troposphere and cooling in the stratosphere and mesosphere, as well as to reveal correlations between the neighboring levels. The features of spring rearrangements of the stratospheric circulation were considered in relation to solar activity and sudden stratospheric warmings under polar night conditions. It was shown that the Arctic oscillation most effectively influences the air temperature of the lower stratosphere in winter.

Keywords: air temperature, linear trend, correlation dependence, northern polar zone, Arctic, spring restructuring of circulation

Acknowledgements. This study used data from the Copernicus Climate Change Service (2019).

The work was supported by the Russian Foundation for Basic Research (projects nos. 18-05-00721, 18-45-160006, and 20-55-00014).

Figure Captions

Fig. 1. Norms (a) and standard deviations (b) of the air temperature (?С) based on the ERA5 data (1979–2019).

Fig. 2. Annual variations of the linear trend slopes of the air temperature in the polar zone (?С/year) based on the ERA5 data (1979–2019).

Fig. 3. Anomalies of the average monthly air temperature in the polar zone of the Northern Hemisphere normalized to the standard deviation.

Fig. 4. Interannual variations of the first differences of the low-frequency components with a period of more than 7 years of the air temperature (?C/year) in the polar zone of the Northern Hemisphere: January (a); July (b).

Fig. 5. Vertical distribution of the linear trend slopes (?C/10 years) of the air temperature in the polar (a) and temperate (b) zones of the Northern Hemisphere: 1 – year; 2 – January; 3 – July.

Fig. 6. Dates (days from the beginning of the year) of the spring rearrangements of the stratospheric circulation (baseline series and low-frequency components with a period of more than 7 years) at 10 hPa in the latitude zone of 90–30? N.

Fig. 7. Dates (days from the beginning of the year) of the spring rearrangements of the stratospheric circulation at 10 hPa in the latitude zone of 90–30? N: 1 – baseline series; 2 – low-frequency components with a period of more than 7 years; 3 and 4 – linear trends for the periods of 1986–2002 and 2002–2019, respectively.

References

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (Eds.). Cambridge, New York, Cambridge Univ. Press, 2013. 1535 p.
  2. Serreze M.C., Barrett A.P., Cassano J.J. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res.: Atmos., 2011, vol. 116, no. D7, art. D07104, pp. 1–20. doi: 10.1029/2010 JD015127.
  3. Alekseev G., Kuzmina S., Bobylev L., Urazgildeeva A., Gnatiuk N. Impact of atmospheric heat and moisture transport on the Arctic warming. Int. J. Climatol., 2019, vol. 39, no. 8, pp. 3582–3592. doi: 10.1002/joс.6040.
  4. Cullather R.I., Lim Y.K., Boisvert L.N., Brucker L., Lee J.N., Nowicki S.M. Analysis of the warmest Arctic winter, 2015–2016. Geophys. Res. Lett., 2016, vol. 43, no. 20, pp. 10808–10816. doi: 10.1002/2016 GL 071228.
  5. Perevedentsev Yu.P., Guryanov V.V., Shantalinsky K.M., Auhadeev T.R. Dinamika troposfery i stratosfery v umerennykh shirotakh Severnogo polushariya i sovremennye izmeneniya klimata v Privolzhskom federal'nom okruge [Dynamics of the Troposphere and Stratosphere in the Temperate Latitudes of the Northern Hemisphere and Current Climate Change in the Volga Federal District]. Kazan, Izd. Kazan. Univ., 2017. 186 p. (In Russian)
  6. Perevedentsev Yu.P., Vasil'ev A.A., Shantalinskii K.M., Gur'yanov V.V. Long-term variations in surface air pressure and surface air temperature in the Northern Hemisphere mid-latitudes. Russ. Meteorol. Hydrol., 2017, vol. 42, no. 7, pp. 461–470. doi: 10.3103/S1068373917070056.
  7. Perevedentsev Yu.P., Shantalinskii K.M., Vasil'ev A.A., Gur'yanov V.V. Thermal regime in the troposphere, stratosphere and lower mesosphere of the Northern Hemisphere in 1979–2016. Russ. Meteorol. Hydrol., 2019, vol. 44, no. 8, pp. 501–512. doi: 10.3103/S1068373919080016.
  8. Vereshchagin M.A., Perevedentsev Yu.P., Shantalinskii K.M., Tudrii V.D. Factor analysis of the long-term dynamics of the global thermal regime of the surface air layer. Izv. Ross. Akad. Nauk. Ser. Geogr., 2004, no. 5, pp. 34–41. (In Russian)
  9. Ermolaev O.P., Kotlyakov V.M., Perevedentsev Yu.P., Selivanovskaya S.Yu. The environment and sustainable development of regions: New methods and technologies of research. Izv. Ross. Akad. Nauk. Ser. Geogr., 2009, no. 6, pp. 119–122. (In Russian)
  10. Mohanakumar K. Stratosphere-Troposphere Interactions. New York, Springer, 2008. 416 p.
  11. Vargin P.N., Yushkov V.A., Khaikin S.M., Tsvetkova N.D., Kostrykin S.V., Volodin E.M. Climate change and the middle atmosphere: Increasingly more questions. Herald Rus. Acad. Sci., 2010, vol. 80, no. 2, pp. 47–56. doi: 10.1134/S1019331610010065.
  12. Vargin P.N., Volodin E.M., Karpenko A.Yu., Pogoreltsev A.I. Stratosphere–troposphere interactions. Herald Rus. Acad. Sci., 2015, vol. 85, no. 1, pp. 56–63.
  13. Zyulyaeva Yu.A., Zhadin E.A. Analysis of three-dimensional Eliassen-Palm fluxes in the lower stratosphere. Russ. Meteorol. Hydrol., 2009, vol. 34, no. 8, pp. 483–490. doi: 10.3103/S1068373909080019.
  14. Jadin E.A., Wei K., Zyulyaeva Yu.A., Chen W., Wang L. Stratospheric wave activity and the Pacific Decadal Oscillation. J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, no. 16, pp. 1163–1170. doi: 10.1016/j.jastp.2010.07.009.
  15. Vargin P.N., Volodin E.M. Analysis of the reproduction of dynamic processes in the stratosphere using the climate model of the Institute of Numerical Mathematics, Russian Academy of Sciences. Izv., Atmos. Oceanic Phys., 2016, vol. 52, no. 1, pp. 1–15. doi: 10.1134/S0001433815060134.
  16. Savenkova E.N., Kanukhina A.Yu., Pogoreltsev A.I., Merzlyakov E.G. Variability of the springtime transition date and planetary waves in the stratosphere. J. Atmos. Sol.-Terr. Phys., 2012, vols. 90–91, pp. 1–8. doi: 10.1016/j.jastp.2011.11.001.
  17. Vargin P.N., Kostrykin S.V., Rakushina E.V., Volodin E.M., Pogoreltsev A.I. Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data. Izv., Atmos. Oceanic Phys., 2020, vol. 56, no. 5, pp. 458–469. doi: 10.1134/S0001433820050114.
  18. Perevedentsev Yu.P., Shantalinskii K.M., Aukhadeev T.R., Ismagilov, N.V., Zandi R. Effect of macrocirculation systems on the thermobaric conditions of the Volga Federal District. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2014, vol. 156, no. 2, pp. 156–169. (In Russian)
  19. Zhou S., Miller A.J., Wang J., Angell J K. Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett., 2001, vol. 28, pp. 4107–4110. doi: 10.1029/2001GL013660.
  20. Guryanov V.V., Eliseev A.V., Mokhov I.I., Perevedentsev Yu.P. Wave activity and its changes in the troposphere and stratosphere of the Northern Hemisphere in winters of 1979–2016. Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 2, pp. 114–126. doi: 10.1134/S0001433818020093.

The content is available under the license Creative Commons Attribution 4.0 License.