I.M. Fitsev*, E.R. Rakhmetova**, A.G. Mukhammetshina***, K.E. Burkin****, O.V. Shlyamina*****

Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia

E-mail: *fitzev@mail.ru, **elvira_rakhmetova@mail.ru, ***aika.muha@yandex.ru, ****konstantinburkin@yandex.ru, *****shlyamina@mail.ru

Received June 23, 2021

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.4.569-580

For citation: Fitsev I.M., Rakhmetova E.R., Mukhammetshina A.G., Burkin K.E., Shlya­mina O.V. Gas chromatography–mass spectrometry determination of deltamethrin in food. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 4, pp. 569–580. doi: 10.26907/2542-064X.2021.4.569-580. (In Russian)

Abstract

The article presents the results of the determination of the synthetic pyrethroid deltamethrin in raw food and various food products by gas chromatography with mass spectrometric detection (GC–MS). The stage of GC–MS determination is preceded by sample preparation using the QuEChERS method.

The developed method for quantitative determination of deltamethrin by GC–MS with electron ionization (EI, 70 eV) in food products using QuEChERS is characterized by a detection limit of 0.9 µg/kg deltamethrin and a standard deviation not exceeding 5%.

The GC–MS quantitative determination of ultra-low deltamethrin content in food was performed in selected ion mode (SIM/SIR mode). The selected ions were m/z 253 (main ion) and m/z 208, 181 (confirming ions), respectively.

Keywords: toxicological control of food, organic pollutants, deltamethrin, gas chromatography–mass spectrometry, QuEChERS

Acknowledgments. We are grateful to the Federal Center for Toxicological, Radiation, and Biological Safety for providing us with the analytical equipment used in this study.

Figure Captions

Fig. 1. Scheme of sample preparation using the QuEChERS method for determining deltamethrin by GC–MS.

Fig. 2. Influence of the sorbents Florisil, PSA, and C18 on the degree of extraction of deltamethrin from food samples: a) fruits and vegetables; b) fish; c) meat.

Fig. 3. EI mass spectrum (70 eV) of deltamethrin and main directions of dissociative ionization of its molecule.

References

  1. Zhu Q., Yang Y., Lao Z., Zhong Y., Zhan K., Zhao S. Photodegradation kinetics, mechanism and aquatic toxicity of deltamethrin, permethrin and dihaloacetylated het-erocyclic pyrethroids. Sci. Total Environ., 2020, vol. 749, art. 142106, pp. 1–12. doi: 10.1016/j.scitotenv.2020.142106.
  2. Shafer T.J., Meyer D.A., Crofton K.M. Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environ. Health Perspect., 2004, vol. 113, no. 2, pp. 123–136. doi: 10.1289/ehp.7254.
  3. Bradberry S.M., Cage S.A., Proudfoot A.T., Vale J.A. Poisoning due to pyrethroids. Toxicol. Rev., 2005, vol. 24, no. 2, pp. 93–106. doi: 10.2165/00139709-200524020-00003.
  4. Vijverberg H.P.M., vanden Bercken J. Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit. Rev. Toxicol., 1990, vol. 21, no. 2, pp. 105–126. doi: 10.3109/10408449009089875.
  5. Parkin P.J., Le Quesne P.M. Effect of a synthetic pyrethroid deltamethrin on excitability changes following a nerve impulse. J. Neurol., Neurosurg. Psychiatry, 1982, vol. 45, no. 4, pp. 337–342. doi: 10.1136/jnnp.45.4.337.
  6. Takahashi M., Le Quesne P.M. The effects of the pyrethroids deltamethrin and cismethrin on nerve excitability in rats. J. Neurol., Neurosurg. Psychiatry, 1982, vol. 45, no. 11, pp. 1005–1011. doi: 10.1136/jnnp.45.11.1005.
  7. Tian D., Mao H., Lv. H., Zheng Y., Peng C., Hou S. Novel two-tiered approach of ecological risk assessment for pesticide mixtures based on joint effects. Chemosphere, 2018, vol. 192, pp. 362–371. doi: 10.1016/j.chemosphere.2017.11.001.
  8. Lawrence L.J., Casida J.E. Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships. Pestic. Biochem. Physiol., 1982, vol. 18, no. 1, pp. 9–14. doi: 10.1016/0048-3575(82)90082-7.
  9. Marcombe S., Mathieu R.B., Pocquet N., Riaz M.-A., Poupardin R., Sélior S., Darriet F., Reynaud S., Yébakima A., Corbel V., David J.-Ph., Chandre F. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS ONE, 2012, vol. 7, no. 2, art. e30989, pp. 1–11. doi: 10.1371/journal.pone.0030989.
  10. Müller P., Chouaïbou M., Pignatelli P., Etang J., Walker E.D., Donnelly M.J., Simard F., Ranson H. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol. Ecol., 2007, vol. 17, no. 4, pp. 1145–1155. doi: 10.1111/j.1365-294X.2007.03617.x.
  11. Wolansky M.J., Harrill J.A. Neurobehavioral toxicology of pyrethroid insecticides in adult animals: A critical review. Neurotoxicol. Teratol., 2008, vol. 30, no. 2, pp. 55–78. doi: 10.1016/j.ntt.2007.10.005.
  12. Chrustek A., Hołynska-Iwan I., Dziembowska I., Bogusiewicz J., Wróblewski M., Cwynar A., Olszewska-Słonina D. Current research on the safety of pyrethroids used as insecticides. Medicina, 2018, vol. 54, no. 4, art. 61, pp. 1–15. doi: 10.3390/medicina54040061.
  13. Mukharlyamova A.Z., Fitsev I.M., Rakhmetova E.R., Mukhammetshina A.G., Makaeva A.R., Shlyamina O.V., Nasybullina Zh.R. API monitoring of synthetic pyrethroids by gas chromatography with mass spectrometric detection. Butlerovskie Soobshch., 2020, vol. 63, no. 9, pp. 68–75. doi: 10.37952/ROI-jbc-01/20-63-9-68. (In Russian)
  14. State Standard 8.736-2011. State system for ensuring the uniformity of measurements (SSM). Multiple direct measurements. Methods of measurement results processing. Main principles. Moscow, Standartinform, 2013. 23 p. (In Russian)
  15. State Standard 34100.1-2017 / ISO/IEC Guide 98-1:2009. Uncertainty of measurement. Part 1. Introduction to guides on the expression of uncertainty in measurement: Interstate standard. Moscow, Standartinform, 2018. 28 p. (In Russian)
  16. General Pharmacopoeia Monograph OFS.1.1.0012.15. Validation of analytical methods. State Pharmacopoeia of the Russian Federation. XIII Ed. Vol. I. Moscow, 2015. (In Russian)
  17. Ferrer C., Gómez M.J., García-Reyes J.F., Ferrer I., Thurman E.M., Fernández-Alba A.R. Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. J. Chromatogr. A, 2005, vol. 1069, no. 2, pp. 183–194. doi: 10.1016/j.chroma.2005.02.015.
  18. Kolberg D.I., Prestes O.D., Adaime M.B., Zanella R. Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC–MS. Food Chem., 2011, vol. 125, no. 4, pp. 1436–1442. doi: 10.1016/j.foodchem.2010.10.041.
  19. Fitsev I.M., Shlyamina O.V., Mukharlyamova A.Z., Mokhtarova S.L., Rakhmetova E.R., Mukhammetshina A.G., Nasybullina Zh.R. Gas chromatography-mass spectrometry screening of persistent organic pollutants in environmental monitoring of vital activity objects. Butlerovskie Soobshch., 2020, vol. 62, no. 6, pp. 89–97. doi: 10.37952/ROI-jbc-01/20-62-6-89. (In Russian)
  20. Liu H., Zhang M., Guo Y., Qiu H. Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food Chem., 2016, vol. 204, pp. 56–61. doi: 10.1016/j.foodchem.2016.02.102.
  21. Hrynko I., Łozowicka B., Kaczyński P. Liquid chromatographic MS/MS analysis of a large group of insecticides in honey by modified QuEChERS. Food Anal. Methods, 2018, vol. 11, pp. 2307–2319. doi: 10.1007/s12161-018-1208-z.
  22. Hygienic Standard 1.2.3539-18. Hygienic standards for the content of pesticides in natural environments (a list). Byull. Normativnykh Metod. Dok. Gossanepidnadzora, 2019, no. 3, pp. 7–103. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.