A.R. Yusupova*, N.G. Nourgalieva**

Kazan Federal University, Kazan, 420008 Russia

E-mail: *yusupovaanast095@gmail.com, **nouria.nourgalieva@kpfu.ru

Received August 8, 2021

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.3.514-526

For citation: Yusupova A.R., Nourgalieva N.G. Geochemical basis of climate change indication in the Holocene sediments of Lake Bannoe (Southern Urals, Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 3, pp. 514–526. doi: 10.26907/2542-064X.2021.3.514-526. (In Russian)

Abstract

The study aims to investigate the geochemical characteristics of lake sediments in order to identify geochemical proxies that reflect climatic changes during lacustrine sedimentation. Finding and substantiating such geochemical indicators is relevant for lake sediments that are sensitive to climatic variations.

The paper presents the results of the analysis of the suitability of the chemical variability index CIA for detecting climate changes in the sediments of Lake Bannoe (Southern Urals) during the Holocene. The radiocarbon dating showed that the lake age is ~ 13 ka cal. The data on the elemental composition of the 5-m core of lake sediments were considered; the data were obtained by the X-ray fluorescence (XRF) analysis.

Based on the ratio of residual, hydrolysate, and carbonate components, it was established that all measured samples belong to a single geochemical facies of siliceous clastic sediments.

The analysis of the CIA relationships with indicators characterizing the provenance (Zr/Ti), grain size (Al/Si), recycling and sorting (ICV), K-metasomatism (A–CN–K diagram) made it possible to determine the suitability of the CIA indicator as a proxy for the intensity of chemical weathering and climatic variations in the lake sediments during the Holocene. The CIA values after correction for K-metasomatism are set in the range of ~ 74–82 with an average of ~ 78, thereby testifying that the climate of the studied epoch was warm and humid with a pronounced warming trend from the Preboreal stage to the Subatlantic stage.

The results of the study contribute to further development of ideas about the lacustrine sedimentation in the territory of the Southern Urals.

Keywords: indicators of chemical variability, Holocene, lake sediments, climate

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 20-35-90058) and funded in part by the Kazan Federal University Strategic Academic Leadership Program, as well as the subsidy allocated to Kazan Federal University for state assignment no. 671-2020-0049 in the sphere of scientific activities.

Figure Captions

Fig. 1. Location of Lake Bannoe: a) map position (shown with the red dot); b) location of core no. 3 (red dot).

Fig. 2. Position of samples in the geochemical classification according to [20]. Areas of geochemical classes are numbered 1–4. Samples of core no. 3 of Lake Bannoe are marked as circles.

Fig. 3. Indicator plots of Lake Bannoe sediments (ad, f – the samples are indicated by circles): relations of CIA with a) Zr/Ti; b) Al/Si; c) CaO; d) WIP; e) A–CN–K: 1 – samples of Lake Bannoe sediments, 2 – trend of data sampling from Lake Bannoe, 3 – position of the UCC point (upper continental crust) according to [24]; f) relation of CIA with K2O. The R2 values are significant if they are not less than 0.31.

Fig. 4. CIAcorr variations along the section of core no. 3 of Lake Bannoe. Climatic stages according to [26–29]: DR-3 – Younger Dryas, PB – preboreal, BO – boreal, AT – Atlantic, SB – subboreal, SA – subatlantic. Radiocarbon dating according to [16].

References

  1. Maslennikova A.V., Udachin V.N., Deryagin V.V. Paleoekologiya i geokhimiya ozernoi sedimentatsii golotsena Urala [Paleoecology and Geochemistry of the Lacustrine Sedimentation in the Urals]. Yekaterinburg, RIO Ural. Otd. Ross. Akad. Nauk, 2014. 136 p. (In Russian)
  2. Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, vol. 299, pp. 715–717. doi: 10.1038/299715a0.
  3. Fedo С.М., Nesbitt H.W., Young G. Unraveling the effects of potassium metasomatism in edimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, vol. 23, no. 10, pp. 921–924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
  4. Yan D.T., Chen D.Z., Wang Q.C., Wang J.G. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology, 2010, vol. 38, no. 7, pp. 599–602. doi: 10.1130/G30961.1.
  5. Roy D.K., Roser B.P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Res., 2013, vol. 23, no. 3, pp. 1163–1171. doi: 10.1016/j.gr.2012.07.006.
  6. Yang J.H., Cawood P.A., Du Y.S., Feng B., Yan J.X. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleoatitude sedimentary records. Geology, 2014, vol. 42, no. 10, pp. 835–838. doi: 10.1130/G35892.1.
  7. Hessler A., Zhang J., Covault J.A., Ambrose W.A. Continental weathering coupled to Paleogene climate changes in North America. Geology, 2017, vol. 45, no. 10, pp. 911–914. doi: 10.1130/G39245.1.
  8. McLennan S.M. Weathering and global denudation. J. Geol., 1993, vol. 101, no. 2, pp. 295–303. doi: 10.1086/648222.
  9. Harnois L. The CIW index: A new chemical index of weathering. Sediment. Geol., 1988, vol. 55, nos. 3–4, pp. 319–322. doi: 10.1016/0037-0738(88)90137-6.
  10. Scheffler K., Hoernes S., Schwark L. Global changes during Carboniferous–Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology, 2003, vol. 31, no. 7, pp. 605–608. doi: 10.1130/0091-7613(2003)031<0605:GCDCGO>2.0.CO;2.
  11. Minyuk P.S., Borkhodoev V.Ya. Geochemical indicators of sedimentation and post-sedimentation events in the lakes of the Northeast of Russia. Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii: Materialy VII Vseros. litol. soveshchaniya [Sedimentary Basins, Sedimentation and Post-Sedimentation Processes in the Geological History: Proc. VII All-Russ. Lithol. Conf.]. Novosibirsk, INGG Sib. Otd. Ross. Akad. Nauk, 2013, vol. II, pp. 282–285. (In Russian)
  12. Lupker M., France-Lanord C., Galy V., Lave J. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett., 2013, vol. 365, pp. 243–252. doi: 10.1016/j.epsl.2013.01.038.
  13. Parker A. An index of weathering for silicate rocks. Geol. Mag., 1970, vol. 107, no. 6, pp. 501–504. doi: 10.1017/S0016756800058581.
  14. Cox R., Lowe D.R., Cullers R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 1995, vol. 59, no. 14, pp. 2919–2940. doi: 10.1016/0016-7037(95)00185-9.
  15. Xu G., Feng Q., Deconinck J.F., Shen J., Zhao T., Young A.L. High-resolution clay mineral and major elemental characterization of a Permian-Triassic terrestrial succession in southwestern China: Diagenetic and paleoclimatic/paleoenvironmental significance. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, vol. 481, pp. 77–93. doi: 10.1016/j.palaeo.2017.05.027.
  16. Yusupova A., Kuzina D., Batalin G., Gareev B., Nourgalieva N. First geochemical data on lacustrine sediments, Lake Bannoe (Bannoe), Southern Urals. Proc. 4th Kazan Golovkinsky Stratigr. Meet. 2020 “Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources”. Filodiritto Ed., 2020, pp. 292–297.
  17. Danukalova G.A., Osipova E.M., Yakovlev A.G. Description of the Lower Neopleistocene horizons (Southern Cis-Urals). In: Geologicheskii sbornik. Nomer 11. Informatsionnye materialy [Geological Collection. No. 11. Information Materials]. Ufa, Dizain Press, 2014, pp. 75–83. (In Russian)
  18. Measuring unknown samples. In: GEO-QUANT M for S8 TIGER User Manual. Karlsruhe, Germany, Bruker AXS GmbH, 2014, pp. 20–24.
  19. Sample analysis. In: GEO-QUANT T for S8 TIGER User Manual. Karlsruhe, Germany, Bruker AXS GmbH, 2013, pp. 2–4.
  20. Baumgardner R.W., Hamlin H.S., Rowe H.D. High-resolution core studies of Wolfcamp/Leonard basinal facies, southern Midland Basin, Texas. Proc. SWS AAPG Meet., May 2014. Texas, Am. Assoc. Pet. Geol., 2014, search and discovery art. no. 10607.
  21. Rankama K., Sahama Th.G. Geochemistry. Chicago, Univ. of Chicago Press, 1950. 912 p.
  22. Goldschmidt V.M. Geochemistry. Oxford, Clarendon Press, 1954. 730 p.
  23. Kholodov V.N. Geochemistry of sedimentary process – phase differentiation of the matter. Tr. Geol. Inst. Ross. Akad. Nauk, 2006. vol. 574, pp. 42–64. (In Russian)
  24. Fu X., Wang J., Song C., Wang Z., Zeng S., Wang D. The Permian-Triassic transition in ocean island setting: Environmental disturbances and new high-resolution carbon-isotope record from the Qiangtang Basin, NW China. Palaeogeogr., Palaeclimatol., Palaeoecol., 2019, vol. 522, pp. 40–51. doi: 10.1016/j.palaeo.2019.03.012.
  25. Rudnick R.L., Gao S. Composition of the continental crust. In: Holland H.D., Turekian K.K. (Eds.) Treatise on Geochemistry. Vol. 3. Pergamon, 2003, pp. 1–64. doi: 10.1016/B0-08-043751-6/03016-4.
  26. Blytt A.G. Forsøg til en Theorie om Indvandringen af Norges Flora under vexlende regnfulde og tørre Tider. Nyt Magazin for Naturvidenskaberne, 1876, Bd. 21, H. 4, S. 279–362. (In Danish)
  27. Blytt A.G. Essay on the Immigration of the Norwegian Flora during the Alternating Rainy and Dry Period. Christiania, Alb. Cammermeyer, 1876. 89 p.
  28. Sernander R. Studier öfver den Ġótländska vegetationens utvecklingshistora. Akad. afh. Uppsala, Nya Tidnings Aktie-Bolags Tr., 1894. 112 s. (In Swedish)
  29. Ravazzi C. An overview of the Quaternary continental stratigraphic units based on biological and climatic events in Italy. Ital. J. Quat. Sci., 2003, vol. 16, pp. 11–18.

 

The content is available under the license Creative Commons Attribution 4.0 License.