F.A. Mouraviev a*, N.M. Khasanova a**, E.Z. Yunusova b***

aKazan Federal University, Kazan, 420008 Russia

b“Spectrum” Engineering Сompany, Kazan, 420061 Russia

E-mail: *fedor.mouraviev@kpfu.ru, **Nailia.Khasanova@kpfu.ru, ***elvina.yunusova.2015@mail.ru

Received July 8, 2021

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.3.371-389

For citation: Mouraviev F.A., Khasanova N.M., Yunusova E.Z. Dolomitic calcretes from the Changhsignian (Upper Permian) red beds of the Orenburg Cis-Urals, Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 3, pp. 371–389. doi: 10.26907/2542-064X.2021.3.371-389. (In Russian)

Abstract

The dolomitic calcrete profiles from the Boyevaya Gora and Tuyembetka sections, both represented by the uppermost Permian (Changhsignian) red continental deposits from the Orenburg Cis-Urals, were studied by sedimentological, mineralogical, and geochemical methods.

Сalcrete from the Boyevaya Gora section formed on sandy-silty flat alluvial fan/sheetflood sediments, under the setting of slow subsidence of the territory. Calcrete from the Tuyembetka section developed on relatively elevated mudflat/playa under a stable tectonic regime.

The subtropical semi-arid climate was reconstructed based on the geochemical indices from the illuvial paleosol horizons. The presence of anhydrite in the calcrete profiles indicates the saline conditions of soil waters. Cryprocrystalline idiomorphic grains (1–3 μm) and the low Mn2+ partitioning ratio between the Ca- and Mg-position in dolomite (0.7–1.8) suggest its primary origin and a rapid crystallization from the soil waters. Free organic radicals and phosphorus-associated anion centers in the pedogenic dolomite identified by the electron paramagnetic resonance (EPR) analysis assume a biogenic contribution to the formation of dolomite.

Fossilized fungal hyphae and bacteriomorphs along with the fragments of plant roots were detected by scanning electron microscopy (SEM) in both calcretes. The bacterial origin of dolomite from the studied calcretes was discussed.

Keywords: calcrete, dolomite, paramagnetic centers, bioturbation, paleosol, Vyatkian Stage, Permian, Orenburg Cis-Urals

Acknowledgements. The study was supported by the Kazan Federal University Strategic Academic Leadership Program.

Figure Captions

Fig. 1. Location of the study objects (a) and stratigraphic position of the calcrete profiles (b) in the Boyevaya Gora (BG-28) and Tuyembetka (TM12) sections: BG – Boyevaya Gora, TM – Tuyembetka.

Fig. 2. Calcrete from the Tuyembetka section: a – general view: 1 – Bw horizon, mudstone, 2 – Bk horizon, dolomitic nodules in the chalky mass; K horizon: 3 – coalesced dolomitic nodules, 4 – prismatic subhorizon, 5 – massive blocky subhorizon, 6 – laminar and brecciated subhorizons; b – sketch of the vertical profile; photomicrographs: c – concentration of silt grains in clayey-ferruginous zones as a result of bioturbation; d – dolomicritic clots/nodules with circum-granular cracks; e – brecciated subhorizon, the cracks in dolomicrite filled in calcisparite.

Fig. 3. Calcrete from the Boyevaya Gora section: a – general view: 1 – D horizon, laminated siltstone, 2 – Bw horizon, fine blocky siltstone, 3 – Bk horizon, coarse blocky dolomitic siltstone, 4 – K horizon, massive dolomite; b – sketch of the vertical profile; photomicrographs: с – bioturbation of the silty matrix by roots (light zone); d – root channels filled with clayey-ferruginous mass and calcisparite; e – oval cross-section of the Skolithos (?) burrow with displaced detrital quartz grains. See legend in Fig. 2.

Fig. 4. SEM photomicrographs of (a) fossilized fungal hyphae, the upper part of dolomitic calcrete from the Tuyembetka section; (b) crypto-microcrystalline idiomorphic grains of dolomite coated by bacterial coccoid-like forms (arrowed), the upper part of dolomitic calcrete from the Boyevaya Gora section. SEM, secondary electrons.

Fig. 5. SEM photomicrographs of (a) fossilized fragment of plant tissue (presumably, the root of a plant) with cryptocrystalline dolomite grains; the elemental analysis spectrum and percentage of chemical elements (b); the area of spectrum recording is marked by white circle. The upper part of dolomitic calcrete from the Boyevaya Gora section (SEM, secondary electrons).

Fig. 6. XRD spectra of the muddy fraction of the Bw horizon (1) and the host rocks from the Tuyembetka (a) and Boyevaya Gora (b) sections. Abbreviations: Sm – smectite, Mus – muscovite, Ch – chlorite, An – analcime, Q – quartz, Ab – albite, H – hematite. Samples saturated with ethylene glycol.

Fig. 7. EPR centers in the rocks of upper parts of the calcrete profiles: a – Tuyembetka, b – Boyevaya Gora; 1 – spectrum of Mn2+ ions in dolomite, the wide line 1 in the 1b window corresponds to the finely dispersed iron oxides, the raw sample; 2 – spectrum of sulfate ion-radicals in anhydrite (1 – SO2, 2 – SO3) and phosphate ion-radical (3 – PO22–) in dolomite, the raw sample; 3 – spectrum of free organic radical, the heat-treated sample at 600 °C. Magnetic field is shown in 0.1 G.

References

  1. Kholodov V.N. Caliches: A newly-formed boundary carbonate material in soils. Lithol. Miner. Resour., 2007, vol. 42, no. 3, pp. 246–256. doi: 10.1134/S0024490207030042.
  2. Wright V.P., Tucker M.E. Calcretes: An introduction. Int. Assoc. Sedimentol. Repr. Ser., 1991, vol. 2, pp. 1–22.
  3. Wright V.P. Calcrete. In: Nash D., McLaren S. (Eds.) Geochemical Sediments and Landscapes. Oxford, UK, Blackwell, 2007, pp. 10–45.
  4. Klappa C.F. Rhizoliths in terrestrial carbonates: Classification, recognition, genesis and significance. Sedimentology, 1980, vol. 27, no. 6, pp. 613–629. doi: 10.1111/j.1365-3091.1980.tb01651.x.
  5. Tverdochlebov V.P. Caliche in the continental red-bed formations on the east of European Russia. Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2001, no. 6, pp. 145–148. (In Russian)
  6. Retallack G.J. Soils of the Past: An Introduction to Paleopedology. Oxford, Blackwell Sci., 2001. xi + 404 p. doi: 10.1002/9780470698716.
  7. Kearsey T., Twitchett R.J., Newell A.J. The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. Geol. Mag., 2012, vol. 149, no. 2, pp. 291–307. doi: 10.1017/S0016756811000926.
  8. Newell A.J., Benton M.J., Kearsey T., Taylor G., Twitchett R.J., Tverdochlebov V.P. Calcretes, fluviolacustrine sediments and subsidence patterns in Permo-Triassic salt-walled minibasins of the south Urals, Russia. Sedimentology, 2012, vol. 59, no. 5, pp. 1659–1676. doi: 10.1111/j.1365-3091.2012.01320.x.
  9. Surkov M.V., Benton M.J., Twitchett R.J., Tverdokhlebov V.P., Newell A.J. First occurrence of footprints of large therapsids from the Upper Permian of European Russia. Palaeontology, 2007, vol. 50, no. 3, pp. 641–652. doi: 10.1111/j.1475-4983.2007.00647.x.
  10. Machette M.N. Calcic soils of the southwestern United States. In: Weide D.L. (Ed.) Soils and Quaternary Geology of the Southwestern United States. Geol. Soc. Am. Spec. Pap. Geological Society of America, 1985, vol. 203, pp. 1–21. doi: 10.1130/SPE203-p1.
  11. Retallack G.J. Field recognition of paleosols. In: Reinhardt J., Sigleo W.R. (Eds.) Paleosols and Applications. Geol. Soc. Am. Spec. Pap. Geol. Soc. Am., 1988, vol. 216, pp. 1–20.
  12. Mack G.H., James W.C., Monger H.C. Classification of paleosols. Geol. Soc. Am. Bull., 1993, vol. 105, no. 2, pp. 129–136. doi: 10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2.
  13. Nordt L.C., Driese S.D. New weathering index improves paleorainfall estimates from Vertisols. Geology, 2010, vol. 38, no. 5, pp. 407–410. doi: 10.1130/G30689.1.
  14. Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev., 2009, vol. 95, nos. 1–2, pp. 1–52. doi: 10.1016/j.earscirev.2009.03.004.
  15. Sheldon N., Retallack G., Tanaka S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. J. Geol., 2002, vol. 110, no. 6, pp. 687–696. doi: 10.1086/342865.
  16. Mouraviev F.A. Lithological and mineralogical characterization of the Permian marker carbonate horizons of the Republic of Tatarstan. Extended Abstract of Cand. Geol.-Mineral. Sci. Diss. Kazan, 2007. 24 p. (In Russian)
  17. Mouraviev F.A., Vinokurov V.M., Galeev A.A., Bulka G.R., Nizamutdinov N.M., Khasanova N.M. Paramagnetism and the nature of dispersed organic matter in the Permian sediments of Tatarstan. Georesursy, 2006, no. 2, pp. 40–45. (In Russian)
  18. Franco R.W.A., Pelegrini F., Rossi A.M. Identification and valuation of paramagnetic radicals in natural dolomites as an indicator of geological events. Phys. Chem. Miner., 2003, vol. 30, pp. 39–43. doi: 10.1007/s00269-002-0281-3.
  19. Casado A.I., Alonso-Zarza A.M., La Iglesia A. Morphology and origin of dolomite in paleosols and lacustrine sequences. Examples from the Miocene of the Madrid Basin. Sediment. Geol., 2014, vol. 312, pp. 50–62. doi: 10.1016/j.sedgeo.2014.07.005.
  20. Mouraviev F.A. Rhythmic construction of the Permian carbonate sections of Tatarstan, revealed by means of EPR method. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2007, vol. 149, no. 4, pp. 152–159. (In Russian)
  21. Galeev A.A., Vinokurov V.M., Mouraviev F.A., Osin Yu.N. EPR and SEM study of organo-mineral associations in Lower Permian evaporite dolomites. Appl. Magn. Reson., 2009, vol. 35, no. 3, pp. 473–479. doi: 10.1007/s00723-009-0178-0.
  22. Tverdochlebov V.P., Tverdokhlebova G.I., Surkov M.V. Continental paleoecosystems at the Paleozoic and Mesozoic boundary. Paper 2. The Upper Tatarian (Severodvinian and Vjatkian) time, the southwest of the East European Platform. Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2006, no. 1, pp. 3–12. (In Russian)
  23. Tverdokhlebov V.P. The proluvium of plains as a genotype of arid and semiarid zones. Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2003, no. 1, pp. 22–24. (In Russian)
  24. Tabor N.J., Myers T.S. Paleosols as indicators of paleoenvironment and paleoclimate. Annu. Rev. Earth Planet. Sci., 2015, vol. 43, pp. 333–361. doi: 10.1146/annurev-earth-060614-105355.
  25. Royer D.L. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 1999, vol. 27, no. 12, pp. 1123–1126. doi: 10.1130/0091-7613(1999)027<1123:DTPCHA>2.3.CO;2.
  26. Alonso-Zarza A.M. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci. Rev., 2003, vol. 60, nos. 3–4, pp. 261–298. doi: 10.1016/S0012-8252(02)00106-X.
  27. Wright V.P. Estimating rates of calcrete formation and sediment accretion in ancient alluvial deposits. Geol. Mag., 1990, vol. 127, no. 3, pp. 273–276. doi: 10.1016/S0012-8252(02)00106-X.
  28. De La Horra R., Benito M. I., Lopez-Gomez J., Arche A., Barrenechea J. F., Luque J. Palaeoenvironmental significance of Late Permian palaeosols in the South-Eastern Iberian Ranges, Spain. Sedimentology, 2008, vol. 55, no. 6, pp. 1849–1873. doi: 10.1111/j.1365-3091.2008.00969.x.
  29. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Khasanova N.M., Nizamutdinov N.M., Trifonov A.A. Red paleosols in the key sections of the Middle and Upper Permian of the Kazan Volga region and their paleoclimatic significance. Paleontol. J., 2015, vol. 49, no. 10, pp. 1150–1159. doi: 10.1134/S0031030115110064.
  30. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Eskin A.A., Kropotova T.V. Paleosols and host rocks from the Middle–Upper Permian reference section of the Kazan Volga region, Russia: A case study. Palaeoworld, 2020, vol. 29, no. 2, pp. 405–425. doi: 10.1016/j.palwor.2019.05.004.

 

The content is available under the license Creative Commons Attribution 4.0 License.