D.V. Khristich , D.A. Sukhorukov ∗∗ , M.Yu. Sokolova ∗∗∗

Tula State University, Tula, 300012 Russia

E-mail: dmitrykhristich@rambler.ru, ∗∗kvantildim@mail.ru, ∗∗∗m.u.sokolova@gmail.com

Received March 12, 2021

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2021.2.214-225

For citationKhristich D.V., Sukhorukov D.A., Sokolova M.Yu. Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, vol. 163, no. 2, pp. 214–225. doi: 10.26907/2541-7746.2021.2.214-225. (In Russian)

Abstract

The concept of canonical axes of anisotropy of the material, in which the largest number of elements of the elastic compliance tensor is equal to zero, is introduced. A program of experiments that allows one to determine the type of an anisotropic material without finding all the components of the elastic compliance tensor in an arbitrary laboratory coordinate system and, simultaneously, to detect the position of the canonical axes of anisotropy in the material is developed. A program of mechanical experiments is proposed to identify the type of initial elastic anisotropy of a material based on the results of experiments in the canonical axes of anisotropy for the case when they coincide with the axes of the laboratory coordinate system. Computer numerical simulation of the experiments is performed. The influence of experimental measurement errors on the identification results is investigated. It is shown that the developed criteria for identifying the type of material are applicable in the presence of measurement errors.

Keywords: anisotropic materials, elastic properties, identification, program of experiments

References

  1. Annin B.D., Ostrosablin N.I. Anisotropy of elastic properties of materials. J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 6, pp. 998–1014. doi: 10.1007/s10808-008-0124-1.
  2. Markin A.A., Sokolova M.Yu. Termomekhanika uprugoplasticheskogo deformirovaniya [Thermomechanics of Elastoplastic Deformation]. Moscow, FIZMATLIT, 2013. 320 p. (In Russian)
  3. Sirotin Yu.I., Shaskol’skaya M.P. Osnovy kristallofiziki [Fundamentals of Crystal Physics]. Moscow, Nauka, 1979. 640 p. (In Russian)
  4. Tsvelodub I.Yu. Determining the elastic characteristics of homogenous anisotropic bodies. J. Appl. Mech. Tech. Phys., 1994, vol. 35, no. 3, pp. 455–458. doi: 10.1007/bf02369887.
  5. Hayes M.A. A simple statical approach to the measurement of the elastic constants in anisotropic media. J. Mater. Sci., 1969, vol. 4, no. 1, pp. 10–14. doi: 10.1007/BF00555041.
  6. Jarić J.P. On the conditions for the existence of a plane of symmetry for anisotropic elastic material. Mech. Res. Commun., 1994, vol. 21, no. 2, pp. 153–174. doi: 10.1016/0093-6413(94)90088-4.
  7. Norris A.N. On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes. Q. J. Mech. Appl. Math., 1989, vol. 42, no. 3, pp. 413–426. doi: 10.1093/qjmam/42.3.413.
  8. Ostapovich K.V., Trusov P.V. On elastic anisotropy: Symmetry identification. Mekh. Kompoz. Mater. Konstr., 2016, vol. 22, no. 1, pp. 69–84. (In Russian)
  9. Sokolova M.Yu., Khristich D.V. Program of experiments to determine the type of initial elastic anisotropy of material. J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, pp. 913– 919. doi: 10.1134/S0021894415050193.
  10. Khristich D., Toan N.S., Sukhorukov D. Determining the type of initial anisotropy of elastic material from a series of experiments. IOP Conf. Ser.: J. Phys., 2020, vol. 1479, no. 1, art. 012139, pp. 1–12. doi: 10.1088/1742-6596/1479/1/012139.
  11. Khristich D.V. A criterion for experimental identification of isotropic and cubic materials. Izv. Tul. Gos. Univ. Estestv. Nauki, 2012, no. 3, pp. 110–118. (In Russian)
  12. Khristich D.V., Kayumov R.A., Mukhamedova I.Z. A program of experiments for determination of the main axes of anisotropy in a material. Izv. Kazan. Gos. Arkhit.-Stroit. Univ., 2012, no. 3, pp. 216–224. (In Russian)
  13. Khristich D.V. A criterion for experimental identification of rhombic, monoclinic, and triclinic materials. Izv. Tul. Gos. Univ. Estestv. Nauki, 2013, no. 3, pp. 166–178. (In Russian)
  14. Khristich D.V. A criterion for experimental identification of hexagonal, trigonal, and tetragonal materials. Vestn. Kazan. Gos. Tekh. Univ. im. A.N. Tupoleva, 2013, no. 2, pp. 67–72. (In Russian)
  15. Khristich D.V. On the problem of identification of the main axes of anisotropy in a material. Izv. Tul. Gos. Univ. Estestv. Nauki, 2014, no. 2, pp. 203–213. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.