N.G. Musakaev a,b , D.S. Belskikh b∗∗

Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Tyumen, 625026 Russia

University of Tyumen, Tyumen, 625003 Russia

E-mail: musakaev@ikz.ru, ∗∗denisbelskikh@gmail.com

Received December 10, 2020

 

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2021.2.153-166

For citationMusakaev N.G., Belskikh D.S. Numerical study of the process of gas hydrate decomposition under the thermal impact on the hydrate-containing region of a porous formation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, vol. 163, no. 2, pp. 153–166. doi: 10.26907/2541-7746.2021.2.153-166. (In Russian)

Abstract

A mathematical model that describes, in a two-dimensional approximation, the thermal impact (a temperature increase at the upper boundary of the reservoir) on the region of the porous medium containing methane and its hydrate in the initial state is proposed. The boundaries of the region are impermeable to decomposition products of the gas hydrate (gas and water). The gas reality and the non-isothermal effects during the movement of gas and water in the porous medium are considered. The methane hydrate decomposition is assumed to be in equilibrium. A numerical study of non-isothermal filtration flow is performed considering the dissociation of methane gas hydrate in the porous medium. The obtained results show that a frontal mode of phase transitions is observed under the thermal impact. The region containing the products of gas hydrate decomposition grows along with the increase in the values of temperature at the upper boundary of the formation and its initial permeability, as well as with the decrease in the hydrate saturation.

Keywords: gas hydrate, porous medium, non-isothermal filtration, hydrate decomposition, numerical study

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 19-31-90043).

References

  1. Vasiliev A.A., Melnikov V.P., Semenov P.B., Oblogov G.E., Streletskaya I.D. Methane concentration and emission in dominant landscapes of typical tundra of Western Yamal. Dokl. Earth Sci., 2019, vol. 485, pt. 1, pp. 284–287. doi: 10.1134/S1028334X19030085.
  2. Neumann R.B., Moorberg C.J., Lundquist J.D., Turner J.C., Waldrop M.P., McFarland J.W., Euskirchen E.S., Edgar C.W., Turetsky M.R. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett., 2019, vol. 46, no. 3, pp. 1393–1401. doi: 10.1029/2018GL081274.
  3. Euskirchen E.S., Bret-Harte M.S., Shaver G.R., Edgar C.W., Romanovsky V.E. Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska. Ecosystems, 2017, vol. 20, no. 5, pp. 960–974. doi: 10.1007/s10021-016-0085-9.
  4. Archer D. Methane hydrate stability and anthropogenic climate change. Biogeosciences, 2007, vol. 4, no. 4, pp. 521–544. doi: 10.5194/BG-4-521-2007.
  5. Kiselev A.A., Reshetnikov A.I. Methane in the Russian Arctic: Measurements and model estimations. Probl. Arkt. Antarkt., 2013, no. 2, pp. 5–15. (In Russian)
  6. Makogon Y.F., Holditch S.A., Makogon T.Y. Natural gas-hydrates – A potential energy source for the 21st century. J. Pet. Sci. Eng., 2007, vol. 56, nos. 1–3, pp. 14–31. doi: 10.1016/j.petrol.2005.10.009.
  7. Lobkovskiy L.I., Nikiforov S.L., Dmitrevskiy N.N., Libina N.V., Semiletov I.P., Ananiev R.A., Meluzov A.A., Roslyakov A.G. Gas extraction and degradation of the submarine permafrost rocks on the Laptev Sea shelf. Oceanology, 2015, vol. 55, no. 2, pp. 283– 290. doi: 10.1134/S0001437015010129.
  8. Chernov A.A., Elistratov D.S., Mezentsev I.V., Meleshkin A.V., Pil’nik A.A. Hydrate formation in the cyclic process of refrigerant boiling-condensation in a water volume. Int. J. Heat Mass Transfer, 2017, vol. 108, pt. B, pp. 1320–1323. doi: 10.1016/j.ijheatmasstransfer.2016.12.035.
  9. Sung W.M., Lee H., Lee H., Lee C. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection. Energy Sources, 2002, vol. 24, no. 6, pp. 499–512. doi: 10.1080/00908310290086527.
  10. Vasil’ev V.I., Popov V.V., Tsypkin G.G. Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dyn., 2006, vol. 41, no. 4, pp. 599–605. doi: 10.1007/s10697-006-0078-z.
  11. Bai Y., Li Q., Zhao Y., Li X., Du Y. The experimental and numerical studies on gas production from hydrate reservoir by depressurization. Transp. Porous Media, 2009, vol. 79, pp. 443–468. doi: 10.1007/s11242-009-9333-1.
  12. Feng J.-C., Li X.-S., Li G., Li B., Chen Z.-Y., Wang Y. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations. Energies, 2014, vol. 7, no. 8, pp. 4813–4834. doi: 10.3390/en7084813.
  13. Barenblatt G.I., Lobkovsky L.I., Nigmatulin R.I. A mathematical model of gas outflow from gas-saturated ice and gas hydrates. Dokl. Earth Sci., 2016, vol. 470, pt. 2, pp. 1046– 1049. doi: 10.1134/S1028334X16100019.
  14. Lobkovskii L.I., Ramazanov M.M. Mathematical model of axisymmetric quasi-steady-state heat and mass transfer in a gas hydrate reservoir. Fluid Dyn., 2017, vol. 52, no. 4, pp. 536–546. doi: 10.1134/S0015462817040081.
  15. Wan Q.-C., Si H., Li B., Li G. Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation. Int. J. Heat Mass Transfer, 2018, vol. 127, pp. 206–217. doi: 10.1016/j.ijheatmasstransfer.2018.07.016.
  16. Wang Y., Feng J.-C., Li X.-S., Zhang Y., Chen Z.-Y. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs. Int. J. Heat Mass Transfer, 2018, vol. 118, pp. 1115–1127. doi: 10.1016/j.ijheatmasstransfer.2017.11.081.
  17. Moridis G.J., Queiruga A.F., Reagan M.T. Production from multilayered hydrate-bearing media with fully coupled flow, thermal, chemical and geomechanical processes using TOUGH + Millstone. Part 1: Numerical modeling of hydrates. Transp. Porous Media, 2019, vol. 128, pp. 405–430. doi: 10.1007/s11242-019-01254-6.
  18. Musakaev N.G., Khasanov M.K., Borodin S.L., Belskikh D.S. Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir. Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 56, pp. 88–101. doi: 10.17223/19988621/56/8. (In Russian)
  19. Musakaev N.G., Borodin S.L., Gubaidullin A.A. Methodology for the numerical study of the methane hydrate formation during gas injection into a porous medium. Lobachevskii J. Math., 2020, vol. 41, no. 7, pp. 1272–1277. doi: 10.1134/S199508022007032X.
  20. Nigmatulin R.I. Dinamika mnogofaznykh sred [Dynamics of Multiphase Media]. Pts. 1, 2. Moscow, Nauka, 1987. (In Russian)
  21. Basniev K.S., Kochina I.N. Podzemnaya gidromekhanika [Underground Hydromechanics]. Moscow, Nedra, 1993. 416 p. (In Russian)
  22. Shagapov V.Sh., Musakaev N.G., Urazov R.R. Mathematical model of natural gas flow in pipelines with allowance for the dissociation of gas hydrates. J. Eng. Phys. Thermophys., 2008, vol. 81, no. 2, pp. 287–296. doi: 10.1007/s10891-008-0036-1.
  23. Istomin V.A., Yakushev V.S. Gazovye gidraty v prirodnykh usloviyakh [Gas Hydrates in Natural Conditions]. Moscow, Nedra, 1992. 236 p. (In Russian)
  24. Musakaev N.G., Borodin S.L. To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide. MATEC Web Conf., 2017, vol. 115, art. 05002, pp. 1–4. doi: 10.1016/j.fuel.2019.116614.
  25. Sloan E.D., Koh A.C. Clathrate Hydrates of Natural Gases. CRC Press, Taylor and Francis Group, 2008. 752 p.
  26. Shagapov V.Sh., Musakaev N.G., Khabeev N.S., Bailey S.S. Mathematical modelling of two-phase flow in a vertical well considering paraffin deposits and external heat exchange. Int. J. Heat Mass Transfer, 2004, vol. 47, no. 4, pp. 843–851. doi: 10.1016/j.ijheatmasstransfer.2003.06.006.
  27. Musakaev N.G., Khasanov M.K. Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs. Mathematics, 2020, vol. 8, no. 1, art. 36, pp. 1–14. doi: 10.3390/math8010036.
  28. Misyura S.Y., Donskoy I.G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel, 2020, vol. 262, art. 116614, pp. 1–8. doi: 10.1016/j.fuel.2019.116614.
  29. Musakaev N.G., Khasanov M.K. On the issue of the solutions existence of the problem of gas hydrate dissociation in a porous medium with the formation of an extended region of phase transitions. J. Phys.: Conf. Ser., 2019, vol. 1404, art. 012034, pp. 1–6. doi: 10.1088/1742-6596/1404/1/012034.

 

The content is available under the license Creative Commons Attribution 4.0 License.