T.S. Guseva

Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111 Russia

E-mail: guseva_ts@imm.knc.ru

Received October 8, 2020


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2021.2.117-127

For citation: Guseva T.S. Impact of a liquid jet on a wetted wall. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, vol. 163, no. 2, pp. 117–127. doi: 10.26907/2541-7746.2021.2.117-127. (In Russian)

Abstract

Some results of the numerical study of the impact of a cylindrical water jet (150–350 m/s) with the hemispherical head on a solid flat wall covered with a thin layer of water are presented. The numerical approach is based on the CIP-CUP method. The comparison is performed for the shock wave patterns, the zones with tensile stresses, and the wall load for a very thin layer (when the level of wall load and the load distribution are close to the jet impact on a dry wall) and for a relatively thick layer (when the load level decreases by more than 2 times and the load distribution is almost uniform). The tensile stress level indicates secondary cavitation. With an increase in the layer thickness, the size of the zone with tensile stresses increases and the stress level relatively slightly decreases. The effect of the jet velocity on the characteristics of the load and on the time dependencies of the maximum and average pressures for different layer thicknesses is considered in more detail. It is found that an increase in the jet velocity causes no significant change in the character of the wall load distribution, the change in the load level can be approximately estimated by the corresponding change in the water hammer pressure, and the size of the area with the maximum pressure increases. The maximum average pressure on the dry wall depending on the jet velocity is obtained, and it is well approximated by the water hammer pressure. With an increase in the layer thickness, the maximum average pressure on the wetted wall decreases from the water hammer pressure (which can be treated as a one-dimensional estimate in this case) the more, the lower the jet velocity. Thus, the influence of non-one-dimensional effects, which determines the damping effect of the layer, increases with a decrease in the jet velocity.

Keywords: jet impact, liquid layer on а wall, wall load, CIP-CUP method

Acknowledgments. Many thanks to Professor A.A. Aganin for helpful feedback on this study.

References

  1. Heymann F.J. Erosion by liquids. Mach. Des., 1970, vol. 10, pp. 118–124.
  2. Xiong J., Koshizuka S., Sakai M. Numerical analysis of droplet impingement using the moving particle semi-implicit method. J. Nucl. Sci. Technol., 2010, vol. 47, no. 3, pp. 314–321. doi: 10.1080/18811248.2010.9711960.
  3. Xiong J., Koshizuka S., Sakai M. Investigation of droplet impingement onto wet walls based on simulation using particle method. J. Nucl. Sci. Technol., 2011, vol. 48, no. 1, pp. 145–153. doi: 10.1080/18811248.2011.9711689.
  4. Kornfeld M., Suvorov L. On the destructive action of cavitation. J. Appl. Phys., 1944, vol. 15, pp. 495–506. doi: 10.1063/1.1707461.
  5. Johnsen E., Colonius T. Numerical simulations of non-spherical bubble collapse. J. Fluid Mech., 2009, vol. 629, pp. 231–262. doi: 10.1017/S0022112009006351.
  6. Hsiao C.T., Jayaprakash A., Kapahi A., Choi J.K., Chahine G.L. Modelling of material pitting from cavitation bubble collapse. J. Fluid Mech., 2014, vol. 755, pp. 142–175. doi: 10.1017/jfm.2014.394.
  7. Heymann F.J. High-speed impact between a liquid drop and a solid surface. J. Appl. Phys., 1969, vol. 40, no. 13, pp. 5113–5122. doi: 10.1063/1.1657361.
  8. Lesser M.B., Field J.E. The impact of compressible liquids. Annu. Rev. Fluid Mech., 1983, vol. 15, pp. 97–122. doi: 10.1146/annurev.fl.15.010183.000525.
  9. Haller K.K., Ventikos Y., Poulikakos D., Monkewitz P. Computational study of high-speed liquid droplet impact. J. Appl. Phys., 2002, vol. 92, no. 5, pp. 2821–2828. doi: 10.1063/1.1495533.
  10. Guseva T.S., Malakhov V.G. Effect of liquid compressibility at a jet impact on a wall. Lobachevskii J. Math., 2019, vol. 40, no. 6, pp. 757–762. doi: 10.1134/S199508021906012X.
  11. Aganin A.A, Il'gamov M.A., Guseva T.S. Influence of the shape of the jet head on its impact on a wetted wall. J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 4, pp. 644–649. doi: 10.1134/S0021894419040072.
  12. Aganin A.A., Guseva T.S. Liquid jet impact on a wet wall. Eur. J. Mech. – B/Fluids, 2020, vol. 79, pp. 141–150. doi: 10.1016/j.euromechflu.2019.09.001.
  13. Guseva T.S. Influence of a thin liquid layer on the impact of a jet upon a wall. J. Mach. Manuf. Reliab., 2019, vol. 48, no. 4, pp. 314–319. doi: 10.3103/S1052618819040083.
  14. Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 2001, vol. 169, no. 2, pp. 556–593. doi: 10.1006/jcph.2000.6625.
  15. Takizawa K., Yabe T., Tsugawa Y., Tezduyar T.E., Mizoe H. Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids. Comput. Mech., 2007, vol. 40, pp. 167–183. doi: 10.1007/s00466-006-0093-2.
  16. Yabe T., Wang P.Y. Unified numerical procedure for compressible and incompressible fluid. J. Phys. Soc. Jpn., 1991, vol. 60, no. 7, pp. 2105–2108. doi: 10.1143/JPSJ.60.2105.
  17. Ogata Y., Yabe T. Shock capturing with improved numerical viscosity in primitive Euler representation. Comput. Phys. Commun., 1999, vol. 119, nos. 2–3, pp. 179–193. doi: 10.1016/S0010-4655(99)00188-5.
  18. Aganin A.A., Guseva T.S. Numerical simulation of impact of a jet on a wall. Math. Models Comput. Simul., 2017, vol. 9, no. 5, pp. 623–635. doi: 10.1134/S2070048217050027.
  19. Aganin A., Guseva T. Numerical simulation of liquid mass collision with a wall. Prog. Comput. Fluid Dyn., 2019, vol. 19, no. 5, pp. 293–306. doi: 10.1504/PCFD.2019.102058.
  20. Сhizhov A.V., Schmidt A.A. Impact of high-velocity drop on an obstacle. Tech. Phys., 2000, vol. 45, no. 12, pp. 1529-1537. doi: 10.1134/1.1333189
  21. Ando K., Liu A.-Q., Ohl C.-D. Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett., 2012, vol. 109, no. 4, art. 044501, pp. 1–5. doi: 10.1103/PhysRevLett.109.044501.


The content is available under the license Creative Commons Attribution 4.0 License.