А.И. Репина

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

 

ОРИГИНАЛЬНАЯ СТАТЬЯ

Полный текст PDF

DOI: 10.26907/2541-7746.2021.1.5-20

Для цитирования : Репина А.И. Сходимость метода Галеркина решения нели\ нейной задачи о собственных модах микродисковых лазеров // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. – 2021. – Т. 163, кн. 1. – С. 5–20. – doi: 10.26907/2541-7746.2021.1.5-20.

For citation : Repina A.I. Convergence of the Galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, vol. 163, no. 1, pp. 5–20. doi: 10.26907/2541-7746.2021.1.5-20. (In Russian)

Аннотация

В работе рассмотрен метод численного решения задачи на собственные значения для уравнения Гельмгольца на плоскости, моделирующей лазерное излучение двумерных микродисковых резонаторов. Метод Галеркина применен к нелинейной задаче на собственные значения для голоморфной фредгольмовой оператор-функции, к которой сводится исходная краевая задача. Доказательство сходимости метода и оценки точности аппроксимации собственных значений основаны на общих результатах теории голоморфных оператор-функций и теории приближенных методов в проблеме собственных значений с нелинейным вхождением параметра.

Ключевые слова: микродисковый лазер, нелинейная задача на собственные значения, система граничных интегральные уравнений Мюллера, метод Галеркина

Благодарности. Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета.

Литература

  1. Du W., Li C., Sun J., Xu H., Yu P., Ren A., Wu J., Wang Z. Nanolasers based on 2D materials // Laser Photonics Rev. – 2020. – V. 14, No 12. – Art. 2000271, P. 1–16. – doi: 10.1002/lpor.202070066.
  2. Nosich A.I., Smotrova E.I., Boriskina S.V., Benson T.M., Sewell P. Trends in microdisk laser research and linear optical modelling // Opt. Quantum Electron. – 2007. – V. 39, No 15. – P. 1253–1272. – doi: 10.1007/s11082-008-9203-z.
  3. Boriskina S.V., Sewell P., Benson T.M., Nosich A.I. Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization // J. Opt. Soc. Am. A. – 2004. – V. 21, No 3. – P. 393–402. – doi: 10.1364/josaa.21.000393.
  4. Smotrova E.I., Nosich A.I. Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity // Opt. Quantum Electron. – 2004. – V. 36, No 3. – P. 213–221. – doi: 10.1023/B:OQEL.0000015641.19947.9c.
  5. Spiridonov A.O., Karchevskii E.M., Benson T.M., Nosich A.I. Why elliptic microcavity lasers emit light on bow-tie-like modes instead of whispering-gallery-like modes // Opt. Commun. – 2019. – V. 439. – P. 112–117. – doi: 10.1016/j.optcom.2019.01.056.
  6. Zolotukhina A.S., Spiridonov A.O., Karchevskii E.M., Nosich A.I. Lasing modes of a microdisk with a ring gain area and of an active microring // Opt. Quantum Electron. – 2015. – V. 47, No 12. – P. 3883–3891. – doi: 10.1007/s11082-015-0240-0.
  7. Zolotukhina A.S., Spiridonov A.O., Karchevskii E.M., Nosich A.I. Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode // Appl. Phys. B: Lasers Opt. – 2017. – V. 123, No 1. – Art. 32, P. 1–6. – doi: 10.1007/s00340-016-6625-3.
  8. Spiridonov A.O., Karchevskii E.M. Mathematical and numerical analysis of the spectral characteristics of dielectric microcavities with active regions // Proc. Int. Conf. Days in Diffraction (DD-2016). – IEEE, 2016. – P. 390–395. – doi: 10.1109/DD.2016.7756880.
  9. Smotrova E.I., Tsvirkun V., Gozhyk I., Lafargue C., Ulysse C., Lebental M., Nosich A.I. Spectra, thresholds, and modal fields of a kite-shaped microcavity laser // J. Opt. Soc. Am. B. – 2013. – V. 30, No 6. – P. 1732–1742. – doi: 10.1364/JOSAB.30.001732.
  10. Mu¨ller C. Foundations of the Mathematical Theory of Electromagnetic Waves. – Berlin; Heidelberg: Springer, 1969. – 356 p.
  11. Spiridonov A.O., Oktyabrskaya A.O., Karchevskii E.M., Nosich A.I. Mathematical and numerical analysis of the generalized complex-frequency eigenvalue problem for two-dimensional optical microcavities // SIAM J. Appl. Math. – 2020. – V. 80, No 4. – P. 1977– 1998. – doi: 10.1137/19M1261882.
  12. Kozlov V., Maz’ya V. Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations. – Heidelberg: Springer, 1999. – 444 p.
  13. Karma O. Approximation in eigenvalue problems for holomorphic Fredholm operator functions I // Numer. Funct. Anal. Optim. – 1996. – V. 17, No 3–4. – P. 365–387. – doi: 10.1080/01630569608816699.
  14. Karma O. Approximation in eigenvalue problems for holomorphic Fredholm operator functions II (convergence rate) // Numer. Funct. Anal. Optim. – 1996. – V. 17, No 3–4. – P. 389–408. – doi: 10.1080/01630569608816700.
  15. Oktyabrskaya A.O., Repina A.I., Spiridonov A.O., Karchevskii E.M., Nosich A.I. Numerical modeling of on-threshold modes of eccentric-ring microcavity lasers using the Muller integral equations and the trigonometric Galerkin method // Opt. Commun. – 2020. – V. 476. – Art. 126311, P. 1–9. – doi: 10.1016/j.optcom.2020.126311.
  16. Repina A.I., Oktyabrskaya A.O., Ketov I.V., Karchevskii E.M. Laser modes of active eccentric microring cavities // Proc. Int. Conf. on Transparent Optical Networks (ICTON-2020). – IEEE, 2020. – P. 1–4. – doi: 10.1109/ICTON51198.2020.9203752.
  17. Repina A.I., Oktyabrskaya A.O. Mathematical modeling of photonic crystal resonators based on the Lasing Eigenvalue Problem // Proc. Int. Conf. on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA-2019). – 2019. – P. 472–477. – doi: 10.1109/SUMMA48161.2019.8947540.
  18. Repina A.I., Oktyabrskaya A.O., Karchevskii E.M. Unidirectional emission of active eccentric microring cavities // Proc. 2020 IEEE East-West Design & Test Symp. (EWDTS-2020). – 2020. – P. 274–278. – doi: 10.1109/EWDTS50664.2020.9225153.
  19. Oktyabrskaya A.O., Repina A.I., Karchevskii E.M. Laser modes of active circular microcavity with circular piercing hole // Proc. Int. Conf. on Electronics and Nanotechnology (ELNANO-2020). – 2020. – P. 207–210. – doi: 10.1109/ELNANO50318.2020.9088894.
  20. Spiridonov A.O., Karchevskii E.M., Nosich A.I. Mathematical and numerical modeling of on-threshold modes of 2-D microcavity lasers with piercing holes // Axioms. – 2019. – V. 8, No 3. – Art. 101, P. 1–16. – doi: 10.3390/axioms8030101.
  21. Reichardt H. Ausstrahlungsbedingungen fur die Wellengleihung // Abh. Math. Semin. Hamburg. – 1960. – V. 24. – P. 41–53.
  22. Kartchevski E.M., Nosich A.I., Hanson G.W. Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber // SIAM J. Appl. Math. – 2005. – V. 65, No 6. – P. 2033–2048.
  23. Colton D., Kress R. Integral Equation Methods in Scattering Theory. – Philadelphia, SIAM, 2013. – xvi, 271 p.
  24. Frolov A., Kartchevskiy E. Integral equation methods in optical waveguide theory // Springer Proc. Math. Stat. – 2013. – V. 52. – P. 119–133.
  25. Karchevskii E.M. The fundamental wave problem for cylindrical dielectric waveguides // Diff. Equat. – 2000. – V. 36, No 7. – P. 1109–1111. – doi: 10.1007/BF02754515.
  26. Spiridonov A.O., Karchevskii E.M. Projection methods for computation of spectral characteristics of weakly guiding optical waveguides // Proc. Int. Conf. Days in Diffraction (DD-2013). – 2013. – P. 131–135. – doi: 10.1109/DD.2013.6712817.
  27. Spiridonov A.O., Karchevskii E.M., Nosich A.I. Rigorous formulation of the lasing eigenvalue problem as a spectral problem for a Fredholm operator function // Lobachevskii J. Math. – 2018. – V. 39, No 8. – P. 1148–1157. – doi: 10.1134/S1995080218080127.
  28. Kress R. Linear integral equations // Springer Monographs in Mathematics. V. 82. – N. Y.: Springer, 1999. – XVI, 412 p. – doi: 10.1007/978-1-4614-9593-2.
  29. Oktyabrskaya A.O., Spiridonov A.O., Karchevskii E.M. Muller boundary integral equations for solving generalized complex-frequency eigenvalue problem // Lobachevskii J. Math. – 2020. – V. 41, No 7. – P. 1377–1384. – doi: 10.1134/S1995080220070343.

Поступила в редакцию 15.01.2021

 

Репина Анна Игоревна, аспирант кафедры прикладной математики, ассистент кафедры системного анализа и информационных технологий

Казанский (Приволжский) федеральный университет ул. Кремлевская, д. 18, г. Казань, 420008, Россия

E-mail: airepinas@gmail.com

 

Контент доступен под лицензией Creative Commons Attribution 4.0 License.