1. Clemente N., Argenziano M., Gigliotti C.L., Ferrara B., Boggio E., Chiocchetti A., Caldera F., Trotta F., Benetti E., Annaratone L., Ribero S., Pizzimenti S., Barrera G., Dianzani U., Cavalli R., Dianzani C. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models // Front. Pharmacol. – 2019. – V. 10. – Art. 776, P. 1–13. – doi: 10.3389/fphar.2019.00776.
  2. Wessely A., Waltera A., Reichert T.E., Stöckl S., Grässel S., Bauer R.J. Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D spheroids // FASEB J. – 2019. – V. 33, No 11. – P. 11884–11893. – doi: 10.1096/fj.201900925R.
  3. Tovari J., Futosi K., Bartal A., Tatrai E., Gacs A., Kenessey I., Paku S. Boyden chamber-based method for characterizing the distribution of adhesions and cytoskeletal structure in HT1080 fibrosarcoma cells // Cell Adhes. Migr. – 2014. – V. 8, No 5. – P. 509–516. – doi: 10.4161/cam.28734.
  4. Ruzycka M., Cimpan M.R., Rios-Mondragon I., Grudzinski I.P. Microfluidics for studying metastatic patterns of lung cancer // J. Nanobiotechnol. – 2019. – V. 17, No 1. – Art. 71, P. 1–30. – doi: 10.1186/s12951-019-0492-0.
  5. Anguiano M., Castilla C., Maska M., Ederra C., Pelaez R., Morales X., Munoz-Arrieta G., Mujika M., Kozubek M., Munoz-Barrutia A., Rouzaut A., Arana S., Garcia-Aznar J.M., Ortiz-de-Solorzano C. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis // PLoS ONE. – 2017. – V. 12, No 2. – Art. e0171417, P. 1–24. – doi: 10.1371/journal.pone.0171417.
  6. Wang S., Li E., Gao Y., Wang Y., Guo Z., He J., Zhang J., Gao Z., Wang Q. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device // PLoS ONE. – 2013. – V. 8, No 2. – Art. e56448, P. 1–7. – doi: 10.1371/journal.pone.0056448.
  7. Mi S., Du Z., Xu Y., Wu Z., Qian X., Zhang M., Sun W. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening // Sci. Rep. – 2016. – V. 6. – Art. 35544, P. 1–11. – doi: 10.1038/srep35544.
  8. Kuhlbach C., da Luz S., Baganz F., Hass V.C., Mueller M.M. A microfluidic system for the investigation of tumor cell extravasation // Bioengineering (Basel). – 2018. – V. 5, No 2. – Art. 40, P. 1–20. – doi: 10.3390/bioengineering5020040.
  9. Lee V.K., Yoo S., Zou H., Friedel R., Dai G. 3D bio-printed model of glioblastoma-vascular niche // Tissue Eng., Pt. A. – 2016. – V. 22, No S1. – P. S-60–S-61. – doi: 10.1089/ten.tea.2016.5000.abstracts.
  10. Truong D., Fiorelli R., Barrientos E.S., Melendez E.L., Sanai N., Mehta S., Nikkhah M. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells –      vascular interactions // Biomaterials. – 2019. – V. 198. – P. 63–77. – doi: 10.1016/j.biomaterials.2018.07.048.
  11. Kingsley D.M., Roberge C.L., Rudkouskaya A., Faulkner D.E., Barroso M., Intes X., Corr D.T. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies // Acta Biomater. – 2019. – V. 95. – P. 357–370. – doi: 10.1016/j.actbio.2019.02.014.
  12. Li Y., Zhang T., Pang Y., Li L., Chen Z.N., Sun W. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab // Biofabrication. – 2019. – V. 11, No 3. – Art. 034102, P. 1–13. – doi: 10.1088/1758-5090/ab256c.
  13. Jiang T., Munguia-Lopez J., Flores-Torres S., Grant J., Vijayakumar S., De Leon-Rodri­guez A., Kinsella J.M. Bioprintable alginate/gelatin hydrogel 3D in vitro model systems induce cell spheroid formation // J. Visualized Exp. – 2018. – V. 137. – Art. 57826, P. 1–11. – doi: 10.3791/57826.
  14. Wang Y., Shi W., Kuss M., Mirza S., Qi D.J., Krasnoslobodtsev A., Zeng J.P., Band H., Band V., Duan B. 3D bioprinting of breast cancer models for drug resistance study // ACS Biomater. Sci. Eng. – 2018. – V. 4, No 12. – P. 4401–4411. – doi: 10.1021/acsbiomaterials.8b01277.
  15. Heinrich M.A., Bansal R., Lammers T., Zhang Y.S., Michel Schiffelers R., Prakash J.  3D-bioprinted mini-brain: A glioblastoma model to study cellular interactions and therapeutics // Adv. Mater. – 2019. – V. 31, No 14. – Art. 1806590, P. 1–9. – doi: 10.1002/adma.201806590.
  16. Langer E.M., Allen-Petersen B.L., King S.M., Kendsersky N.D., Turnidge M.A., Kuziel G.M., Riggers R., Samatham R., Amery T.S., Jacques S.L., Sheppard B.C., Korkola J.E., Muschler J.L., Thibault G., Chang Y.H., Gray J.W., Presnell S.C., Nguyen D.G., Sears R.C. Modeling tumor phenotypes in vitro with three-dimensional bioprinting // Cell Rep. – 2019. – V. 26, No 3. – P. 608–623.e1–e6. – doi: 10.1016/j.celrep.2018.12.090.
  17. Dai X., Ma C., Lan Q., Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility // Biofabrication. – 2016. – V. 8, No 4. – Art. 045005, P. 1–11. – doi: 10.1088/1758-5090/8/4/045005.
  18. Meng F., Meyer C.M., Joung D., Vallera D.A., McAlpine M.C., Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments // Adv. Mater. – 2019. – V. 31, No 10. – Art. 1806899, P. 1–10. – doi: 10.1002/adma.201806899.
  19. Knowlton S., Onal S., Yu C.H., Zhao J.J., Tasoglu S. Bioprinting for cancer research // Trends Biotechnol. – 2015. – V. 33, No 9. – P. 504–513. – doi: 10.1016/j.tibtech.2015.06.007.