A.K. Mineev

Samara Federal Research Scientific Center RAS, Institute of Ecology of the Volga River Basin RAS, Togliatti, 445003 Russia

E-mail: mineev7676@mail.ru

Received January 28, 2020


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.1.137-149

For citation: Mineev A.K. Morphological abnormalities in some dominant fish species from the polluted site of the Pozim River (Udmurt Republic, Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 137–149. doi: 10.26907/2542-064X.2021.1.137-149. (In Russian)

Abstract

Morphological abnormalities resulting from the anthropogenic load on juveniles of five cyprinid species (common roach (Rutilus rutilus Linnaeus, 1758), common rudd (Scardinius erythrophthalmus Linnaeus, 1758), ide (Leuciscus idus Linnaeus, 1758), European chub (Leuciscus cephalus Linnaeus, 1758), and common bream (Abramis brama Linnaeus, 1758)) that are dominant in the polluted site of the Pozim River near Izhevsk were analyzed based on the data obtained in 2012. The abundance of juveniles with abnormalities was high in all the fish species examined. The number of juveniles with morphological abnormalities decreased from the early larval to late fry stages, thereby confirming that the observed malformations are lethal to fish. None of the abnormalities was confined to a particular species, and this suggests that they are not species-specific.

Keywords: anthropogenic impact, pollutants, fish juveniles, morphological abnormalities

Figure Captions

Fig. 1. Occurrence frequency of different groups of morphological abnormalities in fish juveniles from the polluted site of the Pozim River.

Fig. 2. 1 – common roach (stage Е), right-side view, a – pigmented tumor under the right eyeball; 2 – common roach (stage D2), left-side view, a – unpigmented left eyeball; b – unpigmented tumor behind the left eyeball; 3 – common roach (С2), left-side view, a – tumor inside the left eyeball; 4 – ide (С2), left-side view, a – notochord curvature in the truncal segment, b – notochord curvature in the caudal segment.

Fig. 3. Occurrence frequency of juveniles bearing morphological abnormalities at different development stages in the fish species studied.

References

  1. Feist S.W., Lang T., Stentiford G.D., Köhler A. Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring. ICES Tech. Mar. Environ. Sci., 2004, vol. 38. 42 p.
  2. Sindermann C.J. Pollution-associated diseases and abnormalities of fish and shellfish: A review. Fish Bull. (U. S.), 1979, vol. 76, no. 4, pp. 717–749.
  3. Stöcker G. Zu einigen theoretisсhen und methodischen Aspekten der Bioindikation. In: Schubert R., Schulz J. Methodische und theoretische Grundlagen der Bioindikation. Martin-Luther-Universität Halle-Wittenberg, Wiss. Beiträge, 1980, T. 24, S. 10–21. (In German)
  4. Moiseenko T.I. Vodnaya ekotoksikologiya: Teoreticheskie i prikladnye aspekty [Aquatic Ecotoxicology: Theoretical and Applied Aspects]. Moscow, Nauka, 2009. 400 p. (In Russian)
  5. Ekologiya ryb Ob'-Irtyshskogo basseina [Ecology of Fishes of the Ob-Irtysh Basin]. Pavlov D.S., Mochek A.D. (Eds.). Moscow, T-vo. Nauch. Izd. KMK, 2006. 596 p. (In Russian)
  6. Selyukov A.G. Morphofunctional transformations in fishes of the middle and lower Ob' basin under increasing anthropogenic influence. J. Ichthyol., 2012, vol. 52, no. 8, pp. 547–565. doi: 10.1134/S0032945212040108.
  7. Zhukinskii V.N. Vliyanie abioticheskikh faktorov na raznokachestvenost' i zhiznesposobnost' ryb v rannem ontogeneze [Influence of Abiotic Factors on Diversity and Viability of Fish in Early Ontogenesis]. Moscow, Agropromizdat, 1986. 243 p. (In Russian)
  8. Lebedeva O.A., Tychomirova L.I., Philippova G.P., Zav'yalova M.N. Changes in the nature of crucian carp embryogenesis: Long-term observations and experimental studies. Dokl. Akad. Nauk SSSR, 1990, vol. 313, no. 1, pp. 196–199. (In Russian)
  9. Makeeva A.P. Embriologiya ryb [Fish Embryology]. Moscow, Izd. MGU, 1992. 216 p. (In Russian)
  10. Mineev A.K. Pathologies of skeletal muscles in fish from the polluted site of the Pozim River (Udmurt Republic). Voda: Khim. Ekol., 2018, nos. 4–6, pp. 50–54. (In Russian)
  11. Mineev A.K. Gill histopathologies in cyprinids from the polluted site of the Pozim River (Udmurt Republic). Tr. VNIRO, 2017, vol. 167. pp. 52–58. (In Russian)
  12. Golovanov V.K. Temperaturnye kriterii zhiznedeyatel'nosti presnovodnykh ryb [Temperature criteria for Living of Freshwater Fishes]. Moscow, Poligraf-Plyus, 2013. 300 p. (In Russian)
  13. Tsyplakov V.P. Biology, seasonal distribution, and commercial importance of bream in the Kuibyshev Reservoir. Extended Abstract of Cand. Biol. Sci. Diss. Kazan, 1966. 24 p. (In Russian)
  14. Koblitskaya A.F. Opredelitel' molodi presnovodnykh ryb [Guide for Identification of Juvenile Freshwater Fishes]. Moscow, Legk. Pishch. Prom-st., 1981. 208 p. (In Russian)
  15. Lakin G.F. Biometriya [Biometry]. Moscow, Vysch. Shk., 1990. 352 p. (In Russian)
  16. Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2014 god [Overview of the State and Pollution of the Environment in the Russian Federation for 2014]. Chernogaeva G.M. (Ed.). Moscow, Rosgidromet, 2015. 199 p. (In Russian)
  17. The Udmurt Republic National Environmental Report for 2011. Izhevsk, 2012. 246 p. (In Russian)
  18. Koval'chuk A.G., Ermakova T.N., Ryabov D.S. The Izhevsk Environmental Report for 2012. Popov N.M. (Ed.). Izhevsk, 2013. 79 p. (In Russian)
  19. Kirpichnikov V.S. Genetika i selektsiya ryb [Fish Genetics and Breeding]. Leningrad, Nauka, 1987. 520 p. (In Russian)
  20. Rudneva I.I., Zalevskaya I.N. Larvae of sand smelts (Atherina hepsetus L.) as a bioindicator of pollution in the Black Sea coastal waters. Russ. J. Ekol., 2004, vol. 35, no. 2, pp. 86–90. doi: 10.1023/B:RUSE.0000018932.66058.77.
  21. Stouthart X.J.H.X., Haans J.L.M., Lock R.A.C., Bonga S.E.W. Effects of water pH on copper toxicity to early life stages of the common carp (Cyprinus carpio). Environ. Toxicol. Chem., 1996, vol. 15, no. 3, pp. 376–383. doi: 10.1002/etc.5620150323.
  22. Kihara M., Ogata S., Kawano N., Kubota I., Yamaguchi R. Lordosis induction in juvenile red sea bream, Pagrus major, by high swimming activity. Aquaculture, 2002, vol. 212, nos. 1–4, pp. 149–158. doi: 10.1016/S0044-8486(01)00871-7.
  23. Hassanain M.A., Abbas W.T., Ibrahim T.B. Skeletal ossification impairment in Nile Tilapia (Oreochromis niloticus) after exposure to lead acetate. Pak. J. Biol. Sci., 2012, vol. 15, no. 15, pp. 729–735. doi: 10.3923/pjbs.2012.729.735.
  24. Yablokov N.O. Morphological abnormalities in the skeleton of juvenile fishes from the Kacha River (Middle Yenisei River system) along the gradient of anthropogenic impact. Vestn. Tomsk. Gos. Univ. Biol., 2018, vol. 41, pp. 156–173. doi: 10.17223/19988591/41/9. (In Russian)
  25. Lajis A.F.B. Effect of chemical pollutants on craniofacial development of a zebrafish embryo. J. Bioinf. Syst. Biol., 2018, vol. 1, no. 1, pp. 001–010. doi: 10.26502/jbsb.5107001.
  26. Cunningham M.E., Markle D.F., Watral V.G., Kent M.L., Curtis L.R. Patterns of fish deformities and their association with trematode cysts in the Willamette River, Oregon. Environ. Biol. Fishes, 2005, vol. 73, no. 1, pp. 9–19. doi: 10.1007/s10641-004-3153-5.
  27. El-Mansy A.I.E., Shalloof K.A.Sh. A case of deformation in a fish from Lake Manzala, Egypt. Global Vet., 2015, vol. 14, no. 5, pp. 679–685. doi: 10.5829/idosi.gv.2015.14.05.94238.
  28. Crawford R.B., Guarino A.M. Effects of environmental toxicants on development of a teleost embryo. J. Environ. Pathol., Toxicol. Oncol., 1985, vol. 6, no. 2, pp. 185–194.
  29. Pragatheeswaran V., Loganathan B., Natarajan R., Venugapalon V.K. Cadmium induced malformation in eyes of Ambassis commersoni Cuvier. Bull. Environ. Contam. Toxicol., 1989, vol. 43, no. 5, pp. 755–760. doi: 10.1007/BF01701999.
  30. Mandrioli L., Sirri R., Gustinelli A., Quaglio F., Sarli G., Chiocchetti R. Ocular glioneuroma with medulloepitheliomatous differentiation in a goldfish (Carassius auratus). J. Vet. Diagn. Invest., 2014, vol. 26, no. 1, pp. 167–172. doi: 10.1177/1040638713515218.
  31. Boglione C., Gisbert E., Gavaia P., Witten P.E., Moren M., Fontagné S., Koumoundouros G. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev. Aquacult., 2013, vol. 5, no. s1, pp. S121–S167. doi: 10.1111/raq.12016.
  32. Van Leeuwen C.J., Helder T., Seinen W. Aquatic toxicological aspects of dithiocarbamates and related compounds. IV. Teratogenicity and histopathology in rainbow trout (Salmo gairdneri). Aquat. Toxicol., 1986, vol. 9, nos. 2–3, pp. 147–159. doi: 10.1016/0166-445X(86)90020-2.
  33. Middaugh D.P., Fournie J.W., Hemmer M.J. Vertebral abnormalities in juvenile inland silversides Menidia beryllina exposed to terbufos during embryogenesis. Dis. Aquat. Org., 1990, vol. 9, no. 2, pp. 109–116. doi: 10.3354/dao009109.
  34. Stehr C.M., Linbo T.L., Incardona J.P., Scholz N.L. The developmental neurotoxicity of fipronil: Notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol. Sci., 2006, vol. 92, no. 1, pp. 270–278. doi: 10.1093/toxsci/kfj185.
  35. Jezierska B., Ługowska K., Witeska M. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem., 2009, vol. 35, no. 4, pp. 625–640. doi: 10.1007/s10695-008-9284-4.
  36. Witten P.E., Gil-Martens G.L., Hall B.K., Huysseune A., Obach A. Compressed vertebrae in Atlantic salmon Salmo salar: Evidence for metaplastic chondrogenesis as a skeletogenic response late in ontogeny. Dis. Aquat. Org., 2005, vol. 64, no. 3, pp. 237–246. doi: 10.3354/dao064237.

The content is available under the license Creative Commons Attribution 4.0 License.