I.M. Fitsev*, A.Yu. Likhacheva**, A.M. Sayfutdinov***, A.Z. Mukharlyamova****, S.L. Mokhtarova*****, Z.R. Nasybullina******

Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia

E-mail: *fitzev@mail.ru, **aloynagreen@gmail.com, ***alex.saifutdinov@gmail.com, ****muharlyamova82@mail.ru, *****fizhim@vnivi.ru, ****** vnivi@vnivi.ru

Received February 4, 2021


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.1.61-71

For citation: Fitsev I.M., Likhacheva A.Yu., Sayfutdinov A.M., Mukharlyamova A.Z., Mokhtarova S.L., Nasybullina Z.R. Determination of diquat and paraquat by high performance liquid chromatography in areas of environmental monitoring. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 61–71. doi: 10.26907/2542-064X.2021.1.61-71. (In Russian)

Abstract

The concentrations of diquat and paraquat, two members of the class of quaternary ammonium compounds (QAC), were measured using high performance liquid chromatography (HPLC) with UV detection and sample preparation with solid phase extraction. The results obtained during the HPLC determination of diquat and paraquat were confirmed by the method of HPLC – quadrupole time-of-flight mass spectrometry (HPLC-MS) with electrospray ionization. Diquat (0.17 ? 0.02 mg/kg on average, i.e., below its maximum permissible level) was found in the soil samples used to cultivate sunflower, wheat, and potato. In the surface waters of the natural water bodies adjacent to the agricultural lands treated with diquat and paraquat, no QAC compounds were found.

Keywords: environmental monitoring of natural areas, quaternary ammonium compounds, diquat, paraquat, high performance liquid chromatography, quadrupole time-of-flight mass spectrometry

Acknowledgments. We are grateful to the Federal Center for Toxicological, Radiation, and Biological Safety for providing us with the analytical equipment used in this study.

Figure Captions

Fig. 1. ESI mass spectrum of diquat in soil sample no. 3, main ionization routes of its molecule.

References

  1. Greenlee A.R., Ellis T.M., Berg R.L. Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos. Environ. Health Perspect., 2004, vol. 112, no. 6, pp. 703–709. doi: 10.1289/ehp.6774.
  2. Pateiro-Moure M., Arias-Estévez M., Simal-Gándara J. Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils. J. Hazard. Mater., 2010, vol. 178, nos. 1–3, pp. 194–201. doi: 10.1016/j.jhazmat.2010.01.063.
  3. Karuppagounder S.S., Ahuja M., Buabeid M., Parameshwaran K., Abdel-Rehman E., Suppiramaniam V, Dhanasekaran M. Investigate the chronic neurotoxic effects of diquat. Neurochem. Res., 2012, vol. 35, no. 5, pp. 1102–1111. doi: 10.1007/s11064-012-0715-3.
  4. Rodríguez-Martínez S., Wakamatsu K, Galván I. Increase of the benzothiazole moiety content of pheomelanin pigment after endogenous free radical inducement. Dyes Pigm., 2020, vol. 180, art. 108516, pp. 1–4. doi: 10.1016/j.dyepig.2020.108516.
  5. Jia P., Ji S., Zhang H., Chen Y., Wang T. Piceatannol ameliorates hepatic oxidative damage and mitochondrial dysfunction of weaned piglets challenged with diquat. Animals (Basel), 2020, vol. 10, no. 7, art. 1239, pp. 1–15. doi: 10.3390/ani10071239.
  6. García J.J., López-Pingarrón L., Almeida-Souza P., Tres A., Escudero P., García-Gil F.A., Tan D.-X., Reiter R.J., Ramírez J.M., Bernal-Perez M. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. J. Pineal Res., 2014, vol. 56, no. 3, pp. 225–237. doi: 10.1111/jpi.12128.
  7. Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, vol. 47, no. 3, pp. 469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x.
  8. Franco R., Li S., Rodriguez-Rocha H., Burns M., Panayio M.I. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease tidis. Chem.-Biol. Interact., 2010, vol. 188, no. 2, pp. 289–300. doi: 10.1016/j.cbi.2010.06.003.
  9. Freire C., Koifman S. Pesticide exposure and Parkinson's disease: Epidemiological evidence of association. Neurotoxicology, 2012, vol. 33, no. 5, pp. 947–971. doi: 10.1016/j.neuro.2012.05.011.
  10. Bonneh-Barkay D., Reaney S.H., Langston W.J., Di Monte D.A. Redox cycling of the herbicide paraquat in microglial cultures. Mol. Brain Res., 2005, vol. 134, no. 1, pp. 52–56. doi: 10.1016/j.molbrainres.2004.11.005.
  11. Waring J.F., Jolly R.A., Ciurlionis R., Lum P.Y., Praestgaard J.T., Morfitt D.C., Ulrich R.G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol., 2001, vol. 175, no. 1, pp. 28–42. doi: 10.1006/taap.2001.9243.
  12. Siroka Z., Svoboda M., Svobodova Z., Nagl I. A case of diquat poisoning in pigs. Vet. Med., 2019, vol. 64, no. 11, pp. 505–511. doi: 10.17221/87/2019-VETMED.
  13. Sesin V., Dalton R.L., Boutind C., Robinson S.A., Bartlett A.J., Pick F.R. Macrophytes are highly sensitive to the herbicide diquatdibromide in test systems of varying complexity. Ecotoxicol. Environ. Saf., 2018, vol. 165, pp. 325–333. doi: 10.1016/j.ecoenv.2018.08.033.
  14. Fitsev I.M., Shlyamina O.V., Mukharlyamova A.Z., Mokhtarova S.L., Rakhmetova E.R., Mukhammetshina A.G., Nasybullina Z.R. Gas chromatography–mass spectrometry screening of persistent organic pollutants in environmental monitoring of entities ensuring vital activities of the population. Butlerovskie Soobshch., 2020, vol. 62, no. 6, pp. 89–97. doi: 10.37952/ROI-jbc-01/20-62-6-89. (In Russian)
  15. Rakhmetova E.R., Fitsev I.M., Mukharlyamova A.Z., Burkin  K.E., Sayfutdinov A.M, Shlyamina O.V., Nasybullina Z.R. Using high-performance liquid chromatography–time-of-flight mass spectrometry to identify neonicotinoid intoxicants that are lethal to bees. Butlerovskie Soobshch., 2020, vol. 63, no. 9, pp. 59–67. doi: 10.37952/ROI-jbc-01/20-63-9-59. (In Russian)
  16. Mukharlyamova A.Z., Fitsev I.M., Rakhmetova E.R., Mukhammetshina A.G., Makaeva A.R., Shlyamina O.V., Nasybullina Z.R. API-monitoring of synthetic pyrethroids by gas chromatography with mass spectrometric detection. Butlerovskie Soobshch., 2020, vol. 63, no. 9, pp. 68–75. doi: 10.37952/ROI-jbc-01/20-63-9-68. (In Russian)
  17. Burkin K.E., Zhilkin M.E., Likhacheva A.Yu., Balymova M.V., Rakhmetova E.R., Mukhammetshina A.G., Fitsev I.M. Measuring glyphosate concentration in honey by high-performance liquid chromatography. Butlerovskie Soobshch., 2020, vol. 63, no. 9, pp. 76–82. doi: 10.37952/ROI-jbc-01/20-63-9-76. (In Russian)
  18. Khan S.U. Determination of diquat and paraquat residues in soil by gas chromatography. J. Agric. Food Chem., 1974, vol. 22, no. 5, pp. 863–867. doi: 10.1021/jf60195a026.
  19. Gao L., Liu G., Zhu J., Wang C., Liu J. Solid phase microextraction combined with gas chromatography – mass spectrometry for the determination of diquat residues in water. Anal. Chem., 2015, vol. 70, no. 5, pp. 552–557. doi: 10.1134/S1061934815050081.
  20. Castro R., Moyano E., Galceran M.T. Determination of quaternary ammonium pesticides by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A, 2001, vol. 914, nos. 1–2, pp. 111–121. doi: 10.1016/s0021-9673(01)00523-4.
  21. Marr J.C., King J.B. A simple high performance liquid chromatography/ionspray tandem mass spectrometry method for the direct determination of paraquat and diquat in water. Rapid Commun. Mass Spectrom., 1997, vol. 11, no. 5, pp. 479–483. doi: 10.1002/(SICI)1097-0231(199703)11:5<479::AID-RCM874>3.0.CO;2-U.
  22. de Almeida R.M., Yonamine M. Gas chromatographic–mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. J. Chromatogr. B, 2007, vol. 853, nos. 1–2, pp. 260–264. doi: 10.1016/j.jchromb.2007.03.026.
  23. Oh J.-A., Lee J.-B., Lee S.-H., Shin H.-S. Ultra-trace level determination of diquat and paraquat residues in surface and drinking water using ion-pair liquid chromatography with tandem mass spectrometry: A comparison of direct injection and solid-phase extraction methods. J. Sep. Sci., 2014, vol. 37, no. 20, pp. 2900–2910. doi: 10.1002/jssc.201400551.
  24. Hygienic standards for the content of pesticides in the areas of natural environment (list): GN 1.2.3539-18. Byull. Norm. Metod. Dokumentov Gossanepidnadzora, 2019, no. 3, pp. 7–103. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.