V.V. Neklyudov a*, G.A. Boos a**, M.M. Shulaeva b***, G.A. Chmutova a****, R.R. Amirov a*****

aKazan Federal University, Kazan, 420008 Russia

bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *VVNeklyudov@hotmail.com, **Galina.Boos@kpfu.ru, ***mshulaeva@iopc.ru, ****Galina.Tschmutowa@kpfu.ru, *****ramirov@kpfu.ru

Received January 25, 2021


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.1.29-44

For citation: Neklyudov V.V., Boos G.A., Shulaeva M.M., Chmutova G.A., Amirov R.R. α,ω-Bis(hydrazidomethylsulfinyl and sulfonyl)alkanes: State in solution and interaction with copper(II). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 29–44. doi: 10.26907/2542-064X.2021.1.29-44. (In Russian)

Abstract

In this paper, the results of our previous findings on the solvent, protolytic, and complexing abilities of α,ω-bis(amido- and hydrazidomethylsulfinyl and sulfonyl)alkanes were summarized and compared. In addition, the most probable structures of copper(II) complexes (mononuclear 1:1 and 1:2, binuclear 2:4) with 1,8-bis(hydrazidomethylsulfonyl)octane and 1,10-bis(hydrazidomethylsulfonyl)decane were characterized by DFT at PBE/6-311G(d) level of theory. 1,8-Bis(hydrazidomethylsulfonyl)octane and 1,10-bis(hydrazidomethylsulfonyl)decane were found to have unfolded conformations and to be coordinated by copper(II) in the amide form like hydrazides of carboxylic acids. In the binuclear complex, all four ligands are bridging and differ in coordination ways, exhibiting the denticity of four, two, and three. It was demonstrated that sulfoxide groups do not take part in coordination.

Keywords: α,ω-Bis(amido- and hydrazidomethylsulfinyl and sulfonyl)alkanes, copper(II), complexation, ligand denticity, three-dimensional structure

Figure Captions

Fig. 1. Optimized structures of compounds: (L1): “unfolded” (a) and “folded” (b) conformations, (L2) (c), (L3) (d), (L4) (e), (L5) (f).

Fig. 2. Optimized three-dimensional structures of [Cu(L3)]2+ (a) and [Cu(L3)2]2+ (b) complexes according to the data in [4].

Fig. 3. Optimized three-dimensional structures of [Cu(L3)]2+ (a) and [Cu(L3)2]2+ (b) complexes according to the data in [4].

Fig. 4. Molecular structure of Cu2(L4)3](NO3)4∙2H2O binuclear complex according to the data of X-ray crystallography in [5]. Nitrate anions and water molecules are not shown for simplification purposes.

Fig. 5. Structure of [Cu2(L5)4]4+ binuclear complex according to the data of quantum-chemical modeling at the PBE/6-311G(d) level.

References

  1. Fattakhov S.G., Shulaeva M.M., Kravchenko M.A., Mingaleev D.N., Skornyakov S.N., Sinyashin O.G. α,ω-Bis(amide- and hydrazide methyl sulfinyl- and sulphonyl)alkanes having antituberculotic activity and α,ω-Bis(methoxy carbonyl methyl sulfinyl- or sulphonyl)alkanes for their production. Patent RF no. 259125. Byull. Izobret., 2016, no. 20. 23 p. (In Russian)
  2. Neklyudov V.V., Boos G.A., Shulaeva M.M., Chmutova G.A., Bagina Yu.I., Salnikov Yu.I., Amirov R.R. Solution state and complexing ability of 1,4-bis(amidomethylsulfinyl)butane toward iron(III), copper(II), cobalt(II), nickel(II), and manganese(II), Russ. Chem. Bull., 2017, vol. 66, no. 4, pp. 628–635. doi: 10.1007/s11172-017-1783-y.
  3. Neklyudov V.V., Boos G.A., Chmutova G.A., Shulaeva M.M., Bagina Yu.I., Amirov R.R. Complex formation of 1,5-bis(amidomethylsulfonyl)pentane with copper(II) and iron(III). Russ. J. Gen. Chem., 2018, vol. 88, no. 8, pp. 1672–1680. doi: 10.1134/S1070363218080194.
  4. Neklyudov V.V., Boos G.A., Shulaeva M.M., Chmutova G.A., Amirov R.R. 1,6-bis(hydrazidome­thylsulfinyl)hexane: The solution state and complexation with copper(II). Russ. Chem. Bull., 2020, vol. 69, no. 10, pp. 1907–1915. doi: 10.1007/s11172-020-2977-2.
  5. Neklyudov V.V., Boos G.A., Shulaeva M.M., Lodochnikova O.A., Chmutowa G.A., Bulavina E.P., Amirov R.R. Complexes of 1,8-bis(hydrazidomethylsulfonyl)octane and 1,10-bis(hydrazidomethyl­sulfonyl)decane with copper(II). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 33–51. doi: 10.26907/2542-064X.2020.1.33-51. (In Russian)
  6. Ardashov O.V., Genaev A.M., Il'ina I.V., Korchagina D.V., Volcho K.P., Salakhutdinov N.F., Tolstikov G.A. Hydrogenation and conformational analysis of (1R,2R,6S)-3-methyl-6-(1-methyle­thenyl)cyclohex-3-ene-1,2-diol. Russ. J. Org. Chem., 2010, vol. 46, no. 12, pp. 1786–1789. doi: 10.1134/S1070428010120043.
  7. Imre G., Jakli I., Kalaszi A., Farkas O. Advanced automatic generation of 3D molecular structures. Proc. 1st Eur. Chem. Congress. Hungary, Budapest. Aug. 27–31, 2006. Available at: https://chemaxon.com/ app/uploads/2007/11/Advanced_automatic_generation_of_3D_molecular_structures.pdf.
  8. Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett., 1997, vol. 281, no. 1, pp. 151–156. doi: 10.1016/S0009-2614(97)01206-2.
  9. Laikov D.N., Ustynyuk Yu.A. PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull., 2005, vol. 54, no. 3, pp. 820–826. doi: 10.1007/s11172-005-0329-x.
  10. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865.
  11. Belousov V.P., Panov M.Yu. Termodinamika vodnykh rastvorov neelektrolitov [Thermodynamics of Aqueous Solutions of Nonelectrolytes]. Leningrad, Khimiya, 1963. 265 p. (In Russian)
  12. Salnikov Yu.I., Boos G.A., Gibadullina Ch.V. Solvation of copper(II) and ethylenediaminetetraacetic acid in some aqueous organic media. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1991, vol. 17, no. 5, pp. 20–24. (In Russian)
  13. Devyatov F.V., Safina V.F., Lazareva L.G., Salnikov Y.I. The solvation state of cobalt(II), nickel(II), and copper(II) cations in water-dipolar aprotic solvent mixtures. Zh. Neorg. Khim., 1993, vol. 38, no. 6, pp. 1085–1088. (In Russian)
  14. Neklyudov V.V., Boos G.A., Chmutova G.A., Fattakhov S.G., Shulaeva M.M., Bagina Yu.I., Salni­kov Yu.I. Solvation state of iron(III) in aqueous solutions of dimethyl sulfoxide. Complex formation ability of iron(III) with respect to derivatives of sym-triazine and bis(hydrazinocarbonylmethyl) sulfoxide. Russ. J. Gen. Chem., 2016, vol. 86, no. 10, pp. 2367–2374. doi: 10.1134/S1070363216100200.
  15. Biagini P., Calderazzo F., Marchetti F., Pampaloni G., Ramello S., Salvalaggio M., Santi R., Spera S. Mono- and dinuclear complexes of sulfones with the tetrachlorides of group 4. Dalton Trans., 2004, no. 15, pp. 2364–2371. doi: 10.1039/B405871B.
  16. Langford C.H., Langford P.O. Sulfone ligands in cobalt(II) complexes. Inorg. Chem., 1961, vol. 1, no. 1, pp. 184–185. doi: 10.1021/ic50001a037.
  17. Paixão D.A., Marzano I.M., Jaimes E.H.L., Pivatto M., Campos D.L., Pavan F.R., Deflon V.M., Maia P.I. da S., Ferreira A.M. Da C., Uehara I.A., Silva M.J.B., Botelho F.V., Pereira-Maia E.C., Guilardi S., Guerra W. Novel copper(II) complexes with hydrazides and heterocyclic bases: Synthesis, structure and biological studies. J. Inorg. Biochem., 2017, vol. 172, pp. 138–146. doi: 10.1016/j.jinorgbio.2017.04.024.
  18. Odunola O.A., Adeoye I.O., Woods J.A.O. Synthesis and structural features of copper(II) complexes of benzoic acid and methyl substituted benzoic acid hydrazides and X-ray structure of Cu[C6H5CONHNH2]2(NO3)2. Synth. React. Inorg. Met.-Org. Chem., 2002, vol. 32, no. 4, pp. 801–817. doi: 10.1081/SIM-120004447.
  19. Tsitsishvili A.D., Tsutsunava T.I., Gogorishvili P.V., Kharitonov Yu.Ya. Complexes of cobalt(II), nickel(II), and copper(II) with dihydrazide of aselaic acid. Issled. Obl. Khim. Kompleksn. Prostykh Soedin. Nek. Perekhodnykh Redk. Met., 1978, no. 3, pp. 21–23. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.