A.R. Mukhametgalieva*, A.S. Kozlova**, N.I. Akberova***, A.N. Fattakhova****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *aliya_rafikovna@mail.ru, ​**kozlovanastasiaser@gmail.com, ***nakberova@mail.ru, ****afattakh57@gmail.com

Received August 31, 2020


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.1.5-19

For citation: Mukhametgalieva A.R., Kozlova A.S., Akberova N.I., Fattakhova A.N. Ligands affinity for regulatory sites of human acetylcholesterase and butyrylcholinesterase: A comparative bioinformatic analysis. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 5–19. doi: 10.26907/2542-064X.2021.1.5-19. (In Russian)

Abstract

Cholinesterase inhibitors have been the subject of many studies aimed at developing an effective treatment for various cognitive disorders. Therefore, studying cholinesterases and elucidating the mechanism of their interaction with ligands provide a basis for targeted synthesis and selection of highly specific reversible inhibitors. We analyzed the affinity of the cholinesterase substrates and inhibitors to identify the differences in the ligands binding to the acetylcholinesterase and butyrylcholinesterase active sites by molecular docking. Ligands with a benzene ring had better affinity for the regulatory sites of acetylcholinesterase and butyrylcholinesterase. The lowest affinity for enzymes was found in choline, a hydrolysis product of natural acetylcholine, and in tetramethylammonium, a choline derivative. Differences in the binding of acetylcholine and choline molecules within the acyl pocket of the active site of cholinesterases were shown.

Keywords: acetylcholinesterase, butyrylcholinesterase, molecular docking, energy of affinity, acetylcholine, choline

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 19-34-90120).

Figure Captions

Fig. 1. Compounds used as ligands.

Fig. 2. Affinity statistics for the positions of ligands in the regulatory sites; p < 0.05. Differences between the affinity energy values of acetylcholinesterase and butyrylcholinesterase with ligands are shown with color. Ligands on the X-axis have better affinity for the protein than ligands on the Y-axis within this enzyme site. Positive values of the difference between the means (dark blue) indicate lower affinity; negative values (red) show better affinity.

Fig. 3. Interaction of acetylcholinesterase and butyrylcholinesterase amino acids with ligands. Positions of the amino acids: pink color – in acetylcholinesterase, blue color – in butyrylcholinesterase, black color – in both enzymes; p > 0.05.

Fig. 4. Position of acetylcholine and choline in the acyl pocket of acetylcholinesterase and butyrylcholinesterase; colors for the active site regions under study: acyl pocket – green, peripheral anionic site – blue, anionic site – dark blue, catalytic triad – pink, oxyanion hole – orange. Ligands shown in green are characterized by high affinity energy values. Ligands highlighted in red have low affinity energy values. Amino acids interacting with acetylcholine and choline are indicated.

References

  1. Silman I., Sussman J.L. Acetylcholinesterase: 'classical' and 'non-classical' functions and pharmaco­logy. Curr. Opin. Pharmacol., 2005, vol. 5, no. 3, pp. 293–302. doi: 10.1016/j.coph.2005.01.014.
  2. Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, vol. 148, pp. 34–46. doi: 10.1016/j.pharmthera.2014.11.011.
  3. Petrov K.A., Kharlamova A.D., Nikolsky E.E. Cholinesterases: A neurophysiologist's view. Geny Kletki, 2014, vol. 9, nos. 3, pp. 160–167. (In Russian)
  4. Radić Z., Pickering N.A., Vellom D.C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry, 1993, vol. 32, no. 45, pp. 12074–12084. doi: 10.1021/bi00096a018.
  5. Pope C.N., Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol., 2018, vol. 153, pp. 205–216. doi: 10.1016/j.bcp.2018.01.044.
  6. Boyko K.M., Baymukhametov T.N., Chesnokov Y.M., Hons M., Lushchekina S.V., Konarev P.V., Lipkin A.V., Vasiliev A.L., Masson P., Popov V.O., Kovalchuk M.V. 3D structure of the natural tetrameric form of human butyrylcholinesterase as revealed by cryoEM, SAXS and MD. Biochimie, 2019, vol. 156, pp. 196–205. doi:10.1016/j.biochi.2018.10.017.
  7. Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 1991, vol. 253, no. 5022, pp. 872–879. doi: 10.1126/.1678899.
  8. Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D structure to function. Chem.-Biol. Interact., 2010, vol. 187, nos. 1–3, pp. 10–22. doi: 10.1016/j.cbi.2010.01.042.
  9. Xu Y.-L., Li F.-Y., Ndikuryayo F., Yang W.-C., Wang H.-M. Cholinesterases and engineered mutants for the detection of organophosphorus pesticide residues. Sensors (Basel), 2018, vol. 18, no. 12, art. 4281, pp. 1–15. doi: 10.3390/s18124281.
  10. Harel M., Sussman J.L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proc. Natl. Acad. Sci. U.S. A., 1992, vol. 89, no. 22, pp. 10827–10831. doi: 10.1073/pnas.89.22.10827.
  11. Makhaeva G.F., Rudakova E.V., Kovaleva N.V., Lushchekina S.V., Boltneva N.P., Proshin A.N., Shchegolkov E.V., Burgart Ya.V., Saloutin V.I. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ. Chem. Bull., 2019, vol. 68, no. 5, pp. 967–984. doi: 10.1007/s11172-019-2507-2.
  12. Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, vol. 278, no. 42, pp. 41141–41147. doi: 10.1074/jbc.M210241200.
  13. Perry E., Perry R., Blessed G., Tomlinson B. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet, 1977, vol. 309, no. 8004, p. 189. doi: 10.1016/s0140-6736(77)91780-9.
  14. Zueva I., Dias J., Lushchekina S., Semenov V., Mukhamedyarov M., Pashirova T., Babaev V., Nachon F., Petrova N., Nurullin L., Zakharova L., Ilyin V., Masson P., Petrov K. New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer's disease. Neuropharmacology, 2019, vol. 155, pp. 131–141. doi: 10.1016/j.neuropharm.2019.05.025.
  15. Ayupov R.K., Akberova N.I., Tarasov D.S. Docking of pyridoxine derivatives in the active site of cholinesterases. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2011, vol. 153, no. 3, pp. 107–118. (In Russian)
  16. Shafferman A., Barak D., Stein D., Kronman C., Velan B., Greig N.H., Ordentlich A. Flexibility versus “rigidity” of the functional architecture of AchE active center. Chem.-Biol. Interact., 2008, vol. 175, nos. 1–3, pp. 166–172. doi: 10.1016/j.cbi.2008.03.013.
  17. Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem., 2017, vol. 142, suppl. 2, pp. 26–40. doi: 10.1111/jnc.14026.
  18. Xie L., Huang X., Su B. Portable sensor for the detection of choline and its derivatives based on silica isoporous membrane and gellified nanointerfaces. ACS Sens., 2017, vol. 2, no. 6, pp. 803–809. doi: 10.1021/acssensors.7b00166.
  19. Kim D.E., Chivian D., Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004, vol. 32, suppl. 2, pp. W526–W531. doi: 10.1093/nar/gkh468.
  20. Benkert P., Tosatto S.C., Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 2008, vol. 71, no. 1, pp. 261–277. doi: 10.1002/prot.21715.
  21. Phillips J.C., Braun R., Wang W. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, vol. 26, no. 16, pp. 1781–1802. doi: 10.1002/jcc.20289.
  22. Huang J., MacKerell A.D. Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, vol. 34, no. 25, pp. 2135–2145. doi: 10.1002/jcc.23354.
  23. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics, 1996, vol. 14, no. 1, pp. 33–38. doi: 10.1016/0263-7855(96)00018-5.
  24. Grant B.J., Rodrigues A.P., El Sawy K.M., McCammon J.A., Caves L.S. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, vol. 22, no. 21, pp. 2695–2696. doi: 10.1093/bioinformatics/btl461.
  25. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, Springer, 2016. 221 p. doi: 10.1007/978-0-387-98141-3.
  26. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780. doi: 10.1093/molbev/mst010.
  27. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, vol. 45, no. D1, pp. D158–D169. doi: 10.1093/nar/gkw1099.
  28. Ayupov R.K., Akberova N.I., Tarasov D.S. The interaction of a pyridoxine derivative with the active site of acetylcholinesterase. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2012, vol. 154, no. 2, pp. 234–246. (In Russian)
  29. Bajda M., Więckowska A., Hebda M., Guzior N., Sotriffer C.A., Malawska B. Structure-based search for new inhibitors of cholinesterases. Int. J. Mol. Sci., 2013, vol. 14, no. 3, pp. 5608–5632. doi: 10.3390/ijms14035608.
  30. Morris G.M., Huey R., Lindstrom W. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, vol. 30, no. 16, pp. 2785–2791. doi: 10.1002/jcc.21256.
  31. Nachon F., Nicolet Y., Viguié N., Masson P., Fontecilla-Camps J.C., Lockridge O. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: Expression, purification, characterization and crystallization. Eur. J. Biochem., 2002, vol. 269, no. 2, pp. 630–637. doi: 10.1046/j.0014-2956.2001.02692.x.
  32. Mukhametgalieva A.R., Zueva I.V., Aglyamova A.R., Lushchekina S.V., Masson P. A new sensitive spectrofluorimetric method for measurement of activity and kinetic study of cholinesterases. Biochim. Biophys. Acta, Proteins Proteomics, 2020, vol. 1868, no. 1, art. 140270, pp. 1–9. doi: 10.1016/j.bbapap.2019.140270.
  33. Lockridge O., Quinn D.M. 4.14 – Esterases. In: McQueen Ch.A. (Ed.) Comprehensive Toxicology. Vol. 4. Elsevier, 2010, pp. 243–273. doi: 10.1016/B978-0-08-046884-6.00414-0.
  34. Ariens E.J. Molecular Pharmacology. The Mode of Action of Biologically Active Compounds. Vol. II. New York, Acad. Press, 1964. 292 p.
  35. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther., 1990, vol. 47, no. 1, pp. 35–60. doi: 10.1016/0163-7258(90)90044-3.
  36. Masson P., Goldstein B.N., Debouzy J.C., Froment M.T., Lockridge O., Schopfer L.M. Damped oscillatory hysteretic behaviour of butyrylcholinesterase with benzoylcholine as substrate. Eur. J. Biochem., 2004, vol. 271, no. 1, pp. 220–234. doi: 10.1046/j.1432-1033.2003.03924.x.
  37. Lushchekina S.V., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D. Human cholinesterases. Supercomputer calculations in studying the action mechanism and role of molecular polymorphism of a protein molecule. In: Postgenomnye issledovaniya i tekhnologii [Post-genomic Research and Technologies]. Varfolomeev S.D. (Ed.). Moscow, Izd. Mosk. Univ., 2011, pp. 15–102. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.