O.V. Solovevaa, S.A. Soloveva,b∗∗, O.S. Popkovaa∗∗∗

a Kazan State Power Engineering University, Kazan, 420066 Russia bKazan Federal University, Kazan, 420008 Russia

E-mail: rara avis86@mail.ru, ∗∗Sergey.Solovyov@kpfu.ru∗∗∗oksiniy@mail.ru

Received June 15, 2018

Full text PDF

Abstract

Interdependent partitions located in three-dimensional porous structures pose a problem for understanding the flow field, which differs significantly from the flow in traditional porous media. The structure of open cell foam requires the use of various flow laws (Darcy, Forchmeyer, or the direct solution of the Navier–Stokes equations, because the value of medium permeability is unknown in advance). The purpose of this work is to determine the effect of smoothing in the open cell foam structure on the resistance of the medium. As a characteristic of the resistance, the pressure drop has been considered for the given gas flow rate. The main parameters of porous medium are the cell diameter, the fiber diameter, and the porosity. Thus, we have determined the parameter that makes the greatest contribution to the pressure drop change. The computer model of open cell foam has been presented as an ordered set of intersecting spheres. For hydrodynamic calculation, we have used the ANSYS Fluent software package. We have compared the calculation results of pressure drop with the experimental data of other authors. It has been established that the model of a porous medium using of automatic smoothing of all the faces (performed by AutoCAD package) provides the biggest pressure drop at a fixed value of the porosity of the foam compare to the model with smoothed faces manually and the model without smoothing. Thus, the approximation of an elementary porous cell substantially distorts the flow field. It is not good in the detailed simulation of the open cell foam material. In addition, we have made calculations of the pressure drop with different fixed parameters of the medium – porosity, cell diameter, and fiber diameter of the medium. The calculations have shown that hydrodynamics is determined by the fiber diameter of the porous structure.

Keywords: open cell foam, numerical simulation, 3D model, porosity, cell diameter, fiber diameter, pressure drop

Acknowledgments. The study was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project no. 18-41-160005).

References

  1. Garrido G.I., Patcas F.C., Lang S., Kraushaar-Czarnetzki B. Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities. Chem. Eng. Sci., 2008, vol. 63, no. 21, pp. 5202–5217. doi: 10.1016/j.ces.2008.06.015.
  2. Della Torre A., Montenegro G., Tabor G.R., Wears M.L. CFD characterization of flow regimes inside open cell foam substrates. Int. J. Heat Fluid Flow, 2014, vol. 50, pp. 72–82. doi: 10.1016/j.ijheatfluidflow.2014.05.005.
  3. Storm J., Abendroth M., Emmel M., Liedke T., Ballaschk U., Voigt C., Kuna M. Geometrical modelling of foam structures using implicit functions. Int. J. Solids Struct., 2013, vol. 50, nos. 3–4, pp. 548–555. doi: 10.1016/j.ijsolstr.2012.10.026.
  4. Della Torre A., Lucci F., Montenegro G., Onorati A., Eggenschwiler P.D., Tronconi E., Groppi G. CFD modeling of catalytic reactions in open-cell foam substrates. Comput. Chem. Eng., 2016, vol. 92, pp. 55–63. doi: 10.1016/j.compchemeng.2016.04.031.
  5. Mitrichev I.I., Koltsova E.M., Zhena A.V. Computer simulation of gasodynamic conditions in channels of open cell foam. Fundam. Res., 2012, no. 11, pt. 2, pp. 440–446.
  6. Hellmann A., Pitz M., Schmidt K., Haller F., Ripperger S. Characterization of an openpored nickel foam with respect to aerosol filtration efficiency by means of measurement and simulation. Aerosol Sci. Technol., 2015, vol. 49, no. 1, pp. 16–23. doi: 10.1080/02786826.2014.990555.
  7. Wake D., Brown R.C. Filtration of monodisperse aerosols and polydisperse dusts by porous foam filters. J. Aersosol Sci., 1991, vol. 22, no. 6, pp. 693–706. doi: 10.1016/00218502(91)90063-N.
  8. Horneber T., Rauh C., Delgado A. Numerical simulations of fluid dynamics in carrier structures for catalysis: Characterization and need for optimization. Chem. Eng. Sci., 2014, vol. 117, pp. 229–238. doi: 10.1016/j.ces.2014.06.036.
  9. Bai M., Chung J.N. Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams. Int. J. Therm. Sci., 2011, vol. 50, no. 6, pp. 869–880. doi: 10.1016/j.ijthermalsci.2011.01.007.
  10. Bianchi E., Groppi G., Schwieger W., Tronconi E., Freund H. Numerical simulation of heat transfer in the near-wall region of tubular reactors packed with metal open-cell foams. Chem. Eng. J., 2015, vol. 264, pp. 268–279. doi: 10.1016/j.cej.2014.11.055.
  11. Lacroix M., Nguyen P., Schweich D., Huu C.Ph., Savin-Poncet S., Edouard D. Pressure drop measurements and modeling on SiC foams. Chem. Eng. Sci., 2007, vol. 62, no. 12, pp. 3259–3267. doi: 10.1016/j.ces.2007.03.027.
  12. de Carvalho T.P., Morvan H.P., Hargreaves D.M., Oun H., Kennedy A. Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams. Transp. Porous Media, 2017, vol. 117, no. 2, pp. 311–336. doi: 10.1007/s11242-017-0835-y.
  13. Zafari M., Panjepour M., Emami M.D., Meratian M. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams. Appl. Therm. Eng., 2015, vol. 80, pp. 347–354. doi: 10.1016/j.applthermaleng.2015.01.045.
  14. Hu X., Wan H., Patnaik S.S. Numerical modeling of heat transfer in open-cell micro-foam with phase change material. Int. J. Heat Mass Transfer, 2015, vol. 88, pp. 617–626. doi: 10.1016/j.ijheatmasstransfer.2015.04.044.
  15. Belkadi A., Edouard D. DirectCell technique: A very fast and simple method for characteristic lengths estimation in polyurethane open cell foam. Chem. Eng. Proc.: Process Intensif., 2014, vol. 86, pp. 64–68. doi: 10.1016/j.cep.2014.10.012.
  16. Kumar P., Topin F. Predicting pressure drop in open-cell foams by adopting Forchheimer number. Int. J. Multiphase Flow, 2017, vol. 94, pp. 123–136. doi: 10.1016/j.ijmultiphaseflow.2017.04.010.
  17. Saw L.H., Ye Y., Yew M.C., Chong W.T., Yew M.K., Ng T.C. Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system. Appl. Energy, 2017, vol. 204, pp. 1489–1499. doi: 10.1016/j.apenergy.2017.04.022.
  18. Arbak A., Dukhan N., Ba˘gcı O., Ozdemir M. Influence of pore density on thermal development in open-cell metal foam. Exp. Therm. Fluid Sci., 2017, vol. 86, pp. 180–188. doi: 10.1016/j.expthermflusci.2017.04.012.
  19. Yang X.H., Song S.Y., Zhang L.Y., Lu T.J. Pore-scaled analytical modelling of permeability and inertial coefficient for pressure drop prediction of open-cell metallic foams. Proc. ASME 2016 5th Int. Conf. on Micro/Nanoscale Heat and Mass Transfer. Am. Soc. Mech. Eng., 2016, pp. V002T15A001-1–V002T15A001-6. doi: 10.1115/MNHMT2016-6457.
  20. Yang X., Li Y., Zhang L., Jin L., Hu W., Lu T.J. Thermal and fluid transport in micro-open-cell metal foams: Effect of node size. J. Heat Transfer, 2018, vol. 140, no. 1, art. 014502, pp. 1–6. doi: 10.1115/1.4037394.

 

For citation: Soloveva O.V., Solovev S.A., Popkova O.S. Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 4, pp. 681–694. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.