A.S. Alexandrov, M.M. Doroginzkii∗∗, M.S. Tagirov∗∗∗, V.D. Skirda∗∗∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: alexandrov.artem.sergeyevich@gmail.com, ∗∗m dorogin@bk.ru

∗∗∗murat.tagirov@gmail.com, ∗∗∗∗kazanvs@mail.ru

Received August 28, 2018

Full text PDF

Abstract

One of the key problems of nuclear magnetic logging (NML) is the low sensitivity. As long ago as 1991, it was proposed to use superconducting quantum interferometers (SQUID) to increase the signal-to-noise ratio in the NMR logging devices. However, this possibility has not yet been realized due to the difficulty in creating and maintaining low temperatures (required for SQUID operation) in the well conditions. The paper considers the possibilities of increasing the signal-to-noise ratio in the NMR logging equipment taking into account new advances in the field of SQUID NMR and the recently developed SQUIDs on high-temperature superconductors (HTSC). The estimates of the gain in sensitivity owing to the use of the SQUID as a preamplifier for recording the NMR signal have been carried out. It has been shown that a preamplifier based on a SQUID can give a gain of 100 or more times at resonance frequencies up to 700 kHz.

Keywords: nuclear magnetic resonance, SQUID quantum magnetometer, nuclear magnetic logging, preamplifier, receiver antenna

References

  1. Casanova F., Perlo J., Blumich B. Single-sided NMR. In: Casanova F., Perlo J., Blumich B. (Eds.) Single-Sided NMR. Berlin, Heidelberg, Springer, 2011, pp. 1–10.
  2. Fedotov V.V., Litvinov Yu.S., Nesterova Zh.Yu., Fedotov A.V. Antenna system for detecting nuclear resonance excluding effect of induced interference and transient processes. Patent RF no. 2376588 S2. Byull., 2009, no. 28. 3 p. (In Russian)
  3. Clarke J., Braginski A.I. The SQUID Handbook. Vol. I: Fundamentals and technology of SQUIDs and SQUID systems. Weinheim, Wiley-VCH, 2004. 409 p.
  4. Greenberg Ya.S. Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys., 1998, vol. 70, no. 1, pp. 175–222. doi: 10.1103/RevModPhys.70.175.
  5. Dantsker E., Clarke J. Low-noise SQUID. Patent US no. 023161 A, 2000.
  6. Penanen K.I., Eom B.H., Hahn I. Low field SQUID MRI devices, components and methods. Patent US no. 2011/0210738 A1, 2011.
  7. Tesche C.D., Clarke J. dc SQUID: Noise and optimization. J. Low Temp. Phys., 1977, vol. 29, nos. 3–4, pp. 301–331. doi: 10.1007/BF00655097.
  8. Augustine M.P., TonThat D.M., Clarke J. SQUID detected NMR and NQR. Solid State Nucl. Magn. Reson., 1998, vol. 11, nos. 1–2, pp. 139–156. doi: 10.1016/S09262040(97)00103-3.
  9. Suzuki H., Higashino Y., Ohtsuka T. SQUID NMR Studies of TmPO4. J. Low Temp. Phys., 1980, vol. 41, nos. 5–6, pp. 449–461. doi: 10.1007/BF00114358.
  10. Meredith D.J., Pickett G.R., Symko O.G. Application of a SQUID Magnetometer to NMR at Low Temperatures. J. Low Temp. Phys., 1973, vol. 13, nos. 5–6, pp. 607–615. doi: 10.1007/BF00656548.
  11. Clarke J. SQUIDS: Theory and practice. In: Weinstock H., Ralston R.W. (Eds.) The New Superconducting Electronics. Dordrecht, Springer, 1993, pp. 123–180.
  12. Webb R.A. New technique for improved low-temperature SQUID NMR measurements. Rev. Sci. Instrum., 1977, vol. 48, no. 12, pp. 1585–1594. doi: 10.1063/1.1134950.
  13. Chamberlin R.V., Moberly L.A., Symko O.G. High-sensitivity magnetic resonance by SQUID detection. J. Low Temp. Phys., 1979, vol. 35, nos. 3–4, pp. 337–347. doi: 10.1007/BF00115584.
  14. Vinegar H.J. Nuclear magnetism logging tool using high-temperature superconducting SQUID detectors. Patent US no. 4987368, 1991.
  15. Loren J.D., Robinson J.D. Relations between pore size fluid and matrix properties, and NML measurements. SPE J., 1970, vol. 10, no. 3, pp. 268–278. doi: 10.2118/2529-PA.
  16. Day E.P. Detection of NMR using a Josephson-junction magnetometer. Phys. Rev. Lett., 1972, vol. 29, no. 9, pp. 540–542. doi: 10.1103/PhysRevLett.29.540.
  17. Meredith D.J., Pickett G.R., Symko O.G. Detection of NMR at low temperatures using a superconductive quantum interference device. Phys. Lett. A, 1972, vol. 42, no. 1, pp. 13– 14. doi: 10.1016/0375-9601(72)90008-4.
  18. Hirschkoff E.C., Symko O.G., Vant-Hull L.L., Wheatly J.C. Observation of the static nuclear magnetism of pure metallic copper in low magnetic fields. J. Low Temp. Phys., 1970, vol. 2, nos. 5–6, pp. 653–665. doi: 10.1007/BF00628281.
  19. Bishop J.H., Hirschkoff E.C., Wheatley J.C. Very-low-temperature static magnetic properties of certain metals possibly useful as magnetic thermometers. J. Low Temp. Phys., 1971, vol. 5, no. 6, pp. 607–616. doi: 10.1007/BF00628413.
  20. Silver A.H., Zimmerman J.E. Quantum states and transitions in weakly connected superconducting rings. Phys. Rev., 1967, vol. 157, no. 2, pp. 317–341. doi: 10.1103/PhysRev.157.317.
  21. Pickens K.S., Bolef D.I., Holland M.R., Sundfors R.K. Superconducting quantum interference device detection of acoustic nuclear quadrupole resonance of Sb121 and Sb123 in antimony metal. Phys. Rev. B, 1984, vol. 30, no. 1, pp. 3644–3648. doi: 10.1103/PhysRevB.30.3644.
  22. Fan N.Q., Clarke J. Low-frequency nuclear magnetic resonance and nuclear quadrupole resonance spectrometer based on a dc superconducting quantum interference device. Rev. Sci. Instrum., 1991, vol. 62, no. 6, pp. 1453–1459. doi: 10.1063/1.1142466.
  23. Hurlimann M.D., Pennington C.H., Fan N.Q., Clarke J., Pines A., Hahn E.L. Pulsed Fourier-transform NQR of 14N with a dc SQUID. Phys. Rev. Lett., 1992, vol. 69, no. 4, pp. 684–687. doi: 10.1103/PhysRevLett.69.684.
  24. Thomasson S.L., Gould C.M. High slew rate bandwidth integrated dc SQUID magnetometer for NMR applications. IEEE Trans. Appl. Supercond., 1995, vol. 5, no. 2, pp. 3222–3225. doi: 10.1109/77.403277.
  25. Seton H.C., Bussell D.M., Hutchinson J.M.S., Nicholson I., Lurie D.J. DC SQUID based NMR detection from room temperature samples. Phys. Med. Biol., 1992, vol. 37, no. 11, pp. 2133–2138. doi: 10.1088/0031-9155/37/11/010.
  26. Kumar S., Thorson B.D., Avrin W.F. Broadband SQUID NMR with room-temperature samples. J. Magn. Reson., Ser. B, 1995, vol. 107, no. 3, pp. 252–259. doi: 10.1006/jmrb.1995.1085.
  27. Kumar S., Avrin W.F., Whitecotton B.R. NMR of room temperature samples with a flux-locked dc SQUID. IEEE Trans. Magn., 1996, vol. 32, no. 6, pp. 5261–5264. doi: 10.1109/20.545762.
  28. Li J., Lusher C.P., Digby M.E., Cowan B., Saunders J., Drung D., Schurig T. DC SQUID spectrometers for NMR. J. Low Temp. Phys., 1998, vol. 110, nos. 1–2, pp. 261–267. doi: 10.1023/A:1022568213093.
  29. K¨orber R., Casey A., Shibahara A., Piscitelli M., Cowan B. P., Lusher C. P., Saunders J., Drung D., Schurig Th. Nuclear magnetic resonance on room temperature samples in nanotesla fields using a two-stage dc superconducting quantum interference device sensor. Appl. Phys. Lett., 2007, vol. 91, no. 14, art. 142501, pp. 1–3. doi: 10.1063/1.2794028.

 

For citation: Alexandrov A.S., Doroginzkii M.M., Tagirov M.S., Skirda V.D. Towards possible application of quantum magnetometers in nuclear magnetic logging tools. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 4, pp. 631–643. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.