R.O. Sherstyukov∗, A.D. Akchurin∗∗
Kazan Federal University, Kazan, 420008 Russia
E-mail: ∗sher-ksu@mail.ru, ∗∗Adel.Akchurin@kpfu.ru
Received July 27, 2018
Full text PDF
Abstract
The paper considers the problems of detecting midlatitude MSTIDs with a low intensity of disturbance ∆N/N using the method of transionospheric sounding with GNSS signals. For data collection, a dense network of GNSS receivers (> 150) located in the territory of the Russian Federation has been used. On the basis of the obtained experimental data, we have shown the selectivity of the method of transionospheric sensing to the MSTID depending on the geometric conditions of observation. Thus, the use of two-dimensional maps of TEC variations has allowed us to simultaneously observe the signatures of the MSTID with the help of the R03 and G18 satellites (with similar geometric observation conditions). They have not been observed upon the usage of the R18 satellite. For a given spatial arrangement of the MSTID, the maximum amplitudes of TEC variations have been observed at elevation angles of the satellite-receiver lines-of-sight at about 50◦. The sharp drop in amplitudes has been observed at elevation angles more than 70◦. Using our GNSS data and representations of the spatial form obtained using incoherent scatter radars, a schematic model has been constructed to explain the reasons for the geometric conditions dependence of the GNSS method of transionospheric sounding. The proposed model has allowed us to obtain a method for determining the vertical slope of the MSTID using GNSS data. The technique implies observation of the dynamics of the amplitude of TEC variations depending on the geometric observation conditions.
Keywords: ionosphere, MSTID, LSTID, perturbations of ionospheric plasma, F2 layer, TEC map, ionosonde, GPS/GLONASS
Acknowledgments. The study was supported by the Russian Foundation for Basic Research, project no. 18-35-00593.
References
- Georges T.M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. Terr. Phys., 1968, vol. 30, no. 5, pp. 735–746. doi: 10.1016/S0021-9169(68)80029-7.
- Hunsucker R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. Space Phys., 1982, vol. 20, no. 2, pp. 293–315. doi: 10.1029/RG020i002p00293.
- Francis S.H. Global propagation of atmospheric gravity waves: A review. J. Atmos. Terr. Phys., 1975, vol. 37, nos. 6–7, pp. 1011–1054. doi: 10.1016/0021-9169(75)90012-4.
- Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys., 1996, vol. 14, no. 9, pp. 917–940. doi: 10.1007/s00585-996-0917-6.
- Akchurin A.D., Sherstyukov O.N., Zykov E.Yu. The influence of lower atmosphere dynamics on the mid-latitude sporadic E-layer. Adv. Space Res., 1997, vol. 20, no. 6, pp. 1309– 1312. doi: 10.1016/S0273-1177(97)00793-X.
- Tsugawa T., Otsuka Y., Coster A.J., Saito A. Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys. Res. Lett., 2007, vol. 34, no. 22, art. L22101, pp. 1–5. doi: 10.1029/2007GL031663.
- Djuth F.T., Sulzer M.P., Elder J.H., Wickwar V.B. High-resolution studies of atmosphereionosphere coupling at Arecibo Observatory, Puerto Rico. Radio Sci., 1997, vol. 32, no. 6, pp. 2321–2344. doi: 10.1029/97RS02797.
- Livneh D.J., Seker I., Djuth F.T., Mathews J.D. Omnipresent vertically coherent fluctuations in the ionosphere with a possible worldwide-midlatitude extent. J. Geophys. Res., 2009, vol. 114, no. A6, art. A06303, pp. 1–12. doi: 10.1029/2008JA013999.
- Fejer B.G., Kelley M.C. Ionospheric irregularities. Rev. Geophys., 1980, vol. 18, no. 2, pp. 401–454. doi: 10.1029/RG018i002p00401.
- Sherstyukov R.O., Akchurin A.D., Sherstyukov O.N. Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs. Adv. Space Res., 2018, vol. 61, no. 7, pp. 1717–1725. doi: 10.1016/j.asr.2017.11.026.
- Ding F., Wan W., Li Q., Zhang R., Song Q., Ning B., Liu L., Zhao B., Xiong B. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011–2012. J. Geophys. Res. Space Phys., 2014, vol. 119, no. 1, pp. 519–529. doi: 10.1002/2013JA019523.
- Otsuka Y., Suzuki K., Nakagawa S., Nishioka M., Shiokawa K., Tsugawa T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys., 2013, vol. 31, no. 2, pp. 163–172. doi: 10.5194/angeo-31-163-2013.
- Kotake N., Otsuka Y., Ogawa T., Tsugawa T., Saito A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space, 2007, vol. 59, no. 2, pp. 95–102. doi: 10.1186/BF03352681.
- Djuth F.T., Zhang L.D., Livneh D.J., Seker I., Smith S.M, Sulzer M.P., Mathews J.D., Walterscheid R.L. Arecibo’s thermospheric gravity waves and the case for an ocean source. J. Geophys. Res., 2010, vol. 115, no. A8, art. A08305, pp. 1–22. doi: 10.1029/2009JA014799.
- Hoogeveen G.W., Jacobson A.R. Improved analysis of plasmasphere motion using the VLA radio interferometer. Ann. Geophys., 1997, vol. 15, no. 2, pp. 236–245. doi: 10.1007/s00585-997-0236-6.
- Kirkland M.W., Jacobson A.R. Drift-parallax determination of the altitude of traveling ionospheric disturbances observed with the Los Alamos radio-beacon interferometer. Radio Sci., 1998, vol. 33, no. 6, pp. 1807–1826. doi: 10.1029/98RS02033.
- Afraimovich E.L., Terekhov A.I., Udodov M.Iu., Fridman S.V. Refraction distortions of trasionospheric radio signals caused by changes in a regular ionosphere and by travelling ionospheric disturbances. J. Atmos. Terr. Phys., 1992, vol. 54, nos. 7–8, pp. 1013–1020. doi: 10.1016/0021-9169(92)90068-V.
- Sherstyukov R.O., Akchurin A.D. Analysis of daytime medium-scale traveling ionospheric disturbances by two-dimensional maps of total electron content perturbation and ionograms. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 3, pp. 374–389. (In Russian)
For citation: Sherstyukov R.O., Akchurin A.D. Observation of daytime medium-scale traveling ionospheric disturbances using GNSS systems. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 4, pp. 603–616. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.