I.A. Ashatkin*, K.A. Maltsev**, G.F. Gainutdinova***, B.M. Usmanov****, A.M. Gafurov*****, A.F. Ganieva******, T.S. Maltseva*******, E.R. Gizzatullina********

Kazan Federal University, Kazan, 420008 Russia

E-mail: *vanya7397@yandex.ru, **mlcvkirill@mail.ru, ***gulshat-13@yandex.ru, ****busmanof@kpfu.ru, *****gafurov.kfu@gmail.com, ******adelya.ganieva.1997@mail.ru, *******elka-tata_77@mail.ru, ********etheryramon@gmail.com

Received June 3, 2020

Full text PDF

DOI: 10.26907/2542-064X.2020.4.612-628

For citation: Ashatkin I.A., Maltsev K.A., Gainutdinova G.F., Usmanov B.M., Gafurov A.M., Ganieva A.F., Maltseva T.S., Gizzatullina E.R. Analysis of relief morphometry by global DEM in the southern part of the European territory of Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 4, pp. 612–628. doi: 10.26907/2542-064X.2020.4.612-628. (In Russian)

Abstract

The accuracy of four global digital elevation models (GDEMs) was assessed at five key sites in the European part of Russia. Errors observed in the morphometric parameters were analyzed by comparing GDEMs representing the relief of the selected area with more accurate data (1:10 000 maps) and the remote sensing data. The values and lengths of the slopes were used as the statistical indicators to estimate the accuracy of the models. The results of the comparison show that the slope models SRTM C-SIR and AW3D30 are more consistent with the verification model, while the model of slope lengths ASTER GDEM v.2 is the most accurate one.

Keywords: digital elevation model, SRTM, ASTER, GIS

Acknowledgments. The study was supported by the Russian Science Foundation (project no. 19-17-00064).

Figure Captions

Fig. 1. Map of the part of the European territory of Russia showing the key sites under study.

Fig. 2. Verification digital relief models based on the topographic data on the key sites (Republic of Tatarstan (no. 1), Orenburg region (no. 5)).

Fig. 3. Verification digital relief models based on the topographic data on the key sites (Saratov region (no. 4), Voronezh region (no. 3)).

References

  1. Pike R., Evans I., Hengle T. Geomorphometry: A brief guide. In: Hengl T., Reuter H.I. (Eds.) Geomorphometry: Concepts, Software Applications. Elsevier, Amsterdam, 2009, pp. 3–30. doi: 10.1016/S0166-2481(08)00001-9.
  2. Saleem N., Huq M., Twumasi N.Y.D., Javed A., Sajjad A. Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: A review. ISPRS Int. J. Geo-Inf., 2019, vol. 8, no. 12, art. 545, pp. 1–25. doi: 10.3390/ijgi8120545.
  3. Pipaud I., Loibl D., Lehmkuhl F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments – A case study from SE Tibet, China. Geomorphology, 2015, vol. 246, pp. 232–254. doi: 10.1016/j.geomorph.2015.06.025.
  4. James M.R., Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res.: Earth Surf., 2012, vol. 117, no. F03017, pp. 1–17. doi: 10.1029/2011JF002289.
  5. Wood J. The Geomorphological characterisation of Digital Elevation Models. Ph.D. Thesis. Leicester, Univ. of Leicester, 1996. Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561299.
  6. Rodriguez F., Maire E., Courjault-Radé P., Darrozes J. The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees). Geophys Res. Lett., 2002, vol. 29, no. 6, pp. 9-1–9-4. doi: 10.1029/2001GL014412.
  7. Schmidt J., Hewitt A. 4. Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 2003, vol. 121, nos. 3–4, pp. 243–256. doi: 10.1016/j.geoderma.2003.10.008.
  8. Iwahashi J., Pike R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 2007, vol. 86, nos. 3–4, pp. 409–440. doi: 10.1016/j.geomorph.2006.09.012.
  9. Yakar M. Digital elevation model generation by robotic total station instrument. Exp. Tech., 2008, vol. 33, no. 2, pp. 52–59. doi: 10.1111/j.1747-1567.2008.00375.x.
  10. Berry P.A.M., Garlick J.D., Smith R.G. Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sens. Environ., vol. 106, no. 1, pp. 17–27. doi: 10.1016/j.rse.2006.07.011.
  11. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D. The shuttle radar topography mission. Rev. Geophys., 2007, vol. 45, no. 2, art. 2005RG000183, pp. 1–33. doi: 10.1029/2005RG000183.
  12. Mouratidis A., Briole P., Katsambalos K. SRTM 3"DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: A case study from North Greece. Int. J. Remote Sens., 2010, vol. 31, no. 23, pp. 6205–6222. doi: 10.1080/01431160903401403.
  13. Hofton M., Dubayah R., Blair J.B., Rabine D. Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprinting lidar. Photogramm. Eng. Remote Sens., 2006, vol. 72, no. 3, pp. 279–285. doi: 10.14358/PERS.72.3.279.
  14. Kolecka N., Kozak J. Assessment of the accuracy of SRTM C- and X-band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure Appl. Geophys., 2014, vol. 171, pp. 897–912. doi: 10.1007/s00024-013-0695-5.
  15. Miliaresis G. The landcover impact on the aspect/slope accuracy dependence of the SRTM-1 elevation data for the Humboldt range. Sensors (Basel), 2008, vol. 8, no. 5, pp. 3134–3149. doi: 10.3390/s8053134.
  16. On’kov I.V. Assessment of the accuracy of SRTM heights for orthotransformation of high-resolution satellite imagery. Geomatika, 2011, no. 3, pp. 40–46. (In Russian)
  17. Karwel A.K., Ewiak I. Estimation of the accuracy of the SRTM terrain model on the area of Poland. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2008, vol. XXXVII, pt. B7, pp. 169–172.
  18. Rodriguez, E., Morris C.S., Belz J.E., Chapin E.C., Martin J.M., Daffer W., Hensley S. An assessment of the SRTM topographic products. In: Technical Report JPL D-31639. Pasadena, Calif. Jet Propul. Lab., 2005. 143 р.
  19. Zhao Sh., Cheng W., Zhou Ch., Chen X., Zhang Sh., Zhou Z., Liu H., Chai H. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: An example in the Loess Plateau and North China Plain of China. Int. J. Remote Sens., 2011, vol. 32, no. 23, pp. 8081–8093. doi: 10.1080/01431161.2010.532176.
  20. Elkhrachy, I. Vertical accuracy assessment for SRTM and ASTER digital elevation models: A case study of Najran city, Saudi Arabia. Ain Shams Eng. J., 2018, vol. 9, no. 4, pp. 1807–1817. doi: 10.1016/j.asej.2017.01.007.
  21. Sertel E. Accuracy assessment of ASTER Global DEM over Turkey. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2011, vol. XXXVIII, pt. 4, pp. 1–5. Available at: https://www.isprs.org/proceedings/ xxxviii/part4/files/Sertel.pdf.
  22. Santillan J.R., Makinano-Santillan M., Makinano R.M. Vertical accuracy assessment of ALOS World 3D – 30M Digital Elevation Model over northeastern Mindanao, Philippines. Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS). Beijing, 2016, pp. 5374–5377. doi: 10.1109/IGARSS.2016.7730400.
  23. Bayık Ç., Becek K., Mekik Ç., Özendi M. On the vertical accuracy of the ALOS world 3D-30m digital elevation model. Remote Sens. Lett., 2018, vol. 9, no. 6, pp. 607–615. doi: 10.1080/2150704X.2018.1453174.
  24. Ivanov M.A., Yermolaev O.P., Maltsev K.A., Shynbergenov Y.A. Geomorphometric analysis of river basins in East European Russia using SRTM and ASTER GDEM data. J. Eng. Appl. Sci., 2016, vol. 11, no. 14, pp. 3080–3087.
  25. Ermolaev O.P., Mal’tsev K.A., Mukharamova S.S., Kharchenko S.V., Vedeneeva E.A. Cartographic model of river basins of European Russia. Geogr. Nat. Resour., 2017, vol. 38, no. 2, pp. 131–138. doi: 10.1134/S1875372817020032.
  26. Narozhnyaya A.G., Buryak Zh.A. Morphometric analysis of digital elevation models of the Belgorod region with varying degrees of generalization. Nauch. Vedomosti BelGU. Ser. Estestv. Nauki, 2016, no. 25, pp. 169–178. (In Russian)
  27. Maltsev K.A., Golosov V.N., Gafurov A.M. Digital elevation models and their use for assessing soil erosion rates on arable lands. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 3, pp. 514–530. (In Russian)
  28. Mineev A.L., Kutinov Yu.G., Chistova Z.B., Polyakova E.V. Building a digital elevation model for studying exogenous processes in the northern territories of the Russian Federation. Prostranstvo Vremya, 2015, no. 3, pp. 278–291. (In Russian)
  29. The Long Term Archive. Available at: https://lta.cr.usgs.gov.
  30. Earth observation center. Available at: http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5515/9214_read-17716.
  31. New Version of the ASTER GDEM. Available at: https://earthdata.nasa.gov/learn/articles/new-aster-gdem.
  32. ASTER Global Digital Elevation Map. Available at: https://asterweb.jpl.nasa.gov/gdem.asp.
  33. Tadono T., Takaku J., Tsutsui, K., Oda F., Nagai H. Status of “ALOS World 3D (AW3D)” global DSM generation. Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2015, pp. 3822–3825. doi: 10.1109/IGARSS.2015.7326657.
  34. ALOS Global Digital Surface Model “ALOS World 3D-30m (AW3D30)”. Available at: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm.
  35. ArcticDEM – Polar Geospatial Center. Available at: https://www.pgc.umn.edu/data/arcticdem/.
  36. Natsional’nyi atlas Rossii [National Atlas of Russia]. Kravchenko G.F. (Ed.). Vol. 2: Nature and ecology. Moscow, PKO “Kartografiya”, 2007. 496 p. (In Russian)
  37. Hutchinson M.F. A new procedure for gridding elevation and stream of data with automatic removal of spurious pits. J. Hydrol., 1989, vol. 106, nos. 3–4, pp. 211–232. doi: 10.1016/0022-1694(89)90073-5.
  38. Wahba G. Spline Models for Observational Data. Philadelphia, Soc. Ind. Appl. Math., 1990. xvi + 161 p. doi: 10.1137/1.9781611970128.
  39. Instruktsiya po fotogrammetricheskim rabotam pri sozdanii tsifrovykh topograficheskikh kart i planov [Instruction on Photogrammetry while Creating Digital Topographic Maps and Plans]. Moscow, TsNIIGAiK, 2002. 48 p. (In Russian)
  40. Tarboton D.G., Bras R.L., Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data. Hydrol. Processes, 1991, vol. 5, no. 1, pp. 81–100. doi: 10.1002/hyp.3360050107.
  41. Vigiak O., Malagó A., Bouraoui F., Vanmaercke M., Poesen J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ., 2015, vol. 538, pp. 855–875. doi: 10.1016/j.scitotenv.2015.08.095.
  42. Jenson S.K., Domingue J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens., 1988, vol. 54, no. 11, pp. 1593–1600.

 

The content is available under the license Creative Commons Attribution 4.0 License.