E.Yu. Zakirova a*, A.M. Aimaletdinov a**, N.M. Alexandrova a***, I.M. Ganiev a****, S.A. Sofronova a*****, A.N. Valeeva b******, E.E. Garanina a*******, A.A. Rizvanov a********

aKazan Federal University, Kazan, 420008 Russia

bKazan State Academy of Veterinary Medicine, Kazan, 420074 Russia

E-mail: *lenahamzina@yandex.ru, **allekss1982@mail.ru, ***natalya5566@yandex.ru, ****ilnurgm-vgora@mail.ru, *****svetaaleta@mail.ru, ******anastasya.74@mail.ru, *******kathryn.cherenkova@gmail.com, ********rizvanov@gmail.com

Full text PDF
DOI: 10.26907/2542-064X.2020.3.361-380

For citation: Zakirova E.Yu., Aimaletdinov A.M., Alexandrova N.M., Ganiev I.M.,  Sofro­nova S.A., Valeeva A.N., Garanina E.E., Rizvanov A.A. Developing a species-specific genetic agent for treatment of skin defects in dogs. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 3, pp. 361–380. doi: 10.26907/2542-064X.2020.3.361-380. (In Russian)

Received April 17, 2020

Abstract

Gene therapy is important in veterinary medicine due to the current need for more species-specific drugs, because they have proven to prevent an allergic response to heterologous proteins and other problems with the recipient immunity. In this study, we developed species-specific genetically engineered plasmid constructs based on the pBUDK – clVECF164 – clFGF2 plasmid DNA, all encoding genes of the canine vascular endothelial and fibroblast growth factors, which can be used to treat skin, muscle, and ligament injuries in dogs. In vitro studies of these constructs demonstrated that they induce angiogenesis in mesenchymal stem cells. In vivo studies of the plasmid DNA revealed stimulation of skin regeneration in rats and dogs without affecting the general state of animals. No complications were observed after the subcutaneous injection of the plasmid DNA. The results obtained offer a tremendous potential for further advance in veterinary medicine.

Keywords: species-specific gene therapy, vascular endothelial growth factor, fibroblast growth factor, dog, skin damage

Acknowledgments. The study was supported by the Kazan Federal University Strategic Academic Leadership Program.

Figure Captions

Fig. 1. a) Physical map of the pBUDK-clVEGF164-clFGF2 plasmid DNA; b) electrophoresis of the plasmid DNA in 8% agarose gel: 1 – preparation of the pBUDK-clVEGF164-clFGF2 plasmid DNA (upper band – relaxed circle, lower band – supercoil); 2 – plasmid DNA after the SacI and Mlul restriction; 3 – DNA marker (ThermoScientific Inc.) (number of base pairs in the DNA strand per band marker, on the right side of each band).

Fig. 2. Relative level of the fgf2 and vegf164 expression in the MSC of a dog after the transfection with the pBUDК-clVEGF164-clFGF2 plasmid DNA. Note: * р ≤ 0.005 compared with the intact MSC (n = 3).

Fig. 3. Histological slides of the rat skin from the control (a, b, c) and experimental (d, e, f) groups stained for CD34 (green), cell nuclei are blue (DAPI).

Fig. 4. Histological slides of the rat skin in the area of complete reepithelialization on the 28th day after the skin injury, hematoxylin and eosin staining: a) control group; b) experimental group. Note: I – epidermis; II – dermis; 1 – basal epidermal layer; 2 – papillary layer; 3 – microvasculature; 4 – erythrocyte diapedesis.

Fig. 5. Dynamics of changes in the area of skin injuries in dogs. Note: the arrow shows the day of subcutaneous injection of the pBUDK-clVEGF164-clFGF2 plasmid DNA to dog no. 1.

Fig. 6. Histological slides of the dog skin in the area of complete reepithelialization on the 70th day after the skin injury, hematoxylin and eosin staining: a) dog no. 1, b) dog no. 2. Note: I – epidermis; II – dermis; 1 – basal epidermal layer; 2 – microvasculature.

References

  1. Hedlund C.S. Large trunk wounds. Vet. Clin. North Am.: Small Anim. Pract., 2006, vol. 36, no. 4, pp. 846–872. doi: 10.1016/j.cvsm.2006.02.003.
  2. Zakirova E.Yu., Shalimov D.V., Garanina E.E., Zhuravleva M.N., Rutland C.S., Rizvanov A.A. Use of biologically active 3D matrix for extensive skin defect treatment in veterinary practice: Case report. Front. Vet. Sci., 2019, vol. 6, art.76, pp. 1–6. doi: 10.3389/fvets.2019.00076.
  3. Greenwood H.L., Singer P.A., Downey G.P., Martin D.K., Thorsteinsdottir H., Daar A.S. Regenerative medicine and the developing world. PLoS Med., 2006, vol. 3, no. 9, art. e381, pp. 1496–1500. doi: 10.1371/journal.pmed.0030381.
  4. Le T.M., Morimoto N., Mitsui T., Notodihardjo S.C., Munisso M.C., Kakudo N., Kusumoto K. The sustained release of basic fibroblast growth factor accelerates angiogenesis and the engraftment of the inactivated dermis by high hydrostatic pressure. PLoS One, 2019, vol. 14, no. 2, art. e0208658, pp. 1–14. doi: 10.1371/journal.pone.0208658.
  5. Tidd N., Michelsen J., Hilbert В., Quinn J. Мinicircle mediated gene delivery to canine and equine mesenchymal stem cells. Int. J. Mol. Sci., 2017, vol. 18, no. 4, art. 819, pp. 1–14. doi: 10.3390/ijms18040819.
  6. Litvin Y.A., Zakirovа E.Yu., Zhuravleva M.N., Rizvanov A.A. Generation of plasmid DNA expressing species-specific horse VEGF164 and FGF2 factors for gene therapy. BioNanoScience, 2016, vol. 6, no. 4, pp. 550–553. doi: 10.1007/s12668-016-0273-2.
  7. Zakirova E.Yu., Zhuravleva M.N., Masgutov R.F., Usmanov R.A., Rizvanov A.A. Isolation, analysis, and application of authogenic adipose derived multipotential mesenchymal stromal cells from dog for therapy pseudoarthrosis of tibial bone. Geny Kletki, 2014, vol. 9, no. 3-1, pp. 70–75. (In Russian)
  8. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, vol. 25, no. 4, pp. 402–408. doi: 10.1006/meth.2001.1262.
  9. Zhuravleva M.N., Zakirova E.Yu., Masgutov R.F., Valiullin V.V., Deev R.V., Rizvanov A.A. Effect of recombinant plasmid constructs encoding combinations of dog and horse vegf and bmp2 cDNAs on mesenchymal stromal cell differentiation in vitro. Geny Kletki, 2015, vol. 10, no. 3, pp. 42–48. (In Russian)
  10. Schwarz R., Le Roux J.M., Schaller R., Neurand K. Micromorphology of the skin (epidermis, dermis, subcutis) of the dog. Onderstepoort J. Vet. Res., 1979, vol. 46, no. 2, pp. 105–109.
  11. Vollmerhaus B., Frewein J., Amselgruber W. Anatomiya sobaki i koshki [Anatomy of Cats and Dogs]. Moscow, AKVARIUM BUK, 2003. 580 p. (In Russian)
  12. Sendra L., Herrero M.J., Aliño S.F. Translational advances of hydrofection by hydrodynamic injection. Genes (Basel), 2018, vol. 9, no. 3, art. 136, pp. 1–33. doi: 10.3390/genes9030136.
  13. Troy G.C., Huckle W.R., Rossmeisl J.H., Panciera D., Lanz O., Robertson J.L., Ward D.L. Endostatin and vascular endothelial growth factor concentrations in healthy dogs, dogs with selected neoplasia, and dogs with nonneoplastic diseases. J. Vet. Intern. Med., 2006, vol. 20, no. 1, pp. 144–150. doi: 10.1892/0891-6640(2006)20[144:eavegf]2.0.co;2.
  14. Kano М., Morishita Y., Iwata С., Iwasaka S., Watabe Т., Ouchi Y., Miyazono К., Miyazawa К. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B–PDGFRβ signaling. J. Cell Sci., 2005, vol. 118, pt. 16, pp. 3759–3768. doi: 10.1242/jcs.02483.
  15. Cavallaro U., Tenan M., Castelli V., Perilli A., Maggiano N., Van Meir E.G., Montesano R., Soria M.R., Pepper M.S. Response of bovine endothelial cells to FGF-2 and VEGF is dependent on their site of origin: Relevance to the regulation of angiogenesis. J. Cell Biochem., 2001, vol. 82, no. 4, pp. 619–633. doi: 10.1002/jcb.1190.
  16. Pritulina Yu.G., Krivoruchko I.V., Shentsova V.V., Fil’ G.V., Astapchenko D.S., Sakharova L.A. Analysis of cytokine status in a number of infectious diseases. Usp. Sovrem. Estestvozn., 2014, no. 2, pp. 16–20. (In Russian)
  17. Liapakis I.E., Anagnostoulis S., Karayiannakis A. J., Korkolis D. P., Lambropoulou M., Arnaud E., Simopoulos C.E. Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: An experimental study. In Vivo, 2008, vol. 22, no. 2, pp. 247–252.
  18. Seitz O., Schurmann С., Hermes N., Muller E., Pfeilschifter J., Frank S., Goren I. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study. Exp. Diabetes Res., 2010, vol. 2010, art. 476969, pp. 1–15. doi: 10.1155/2010/476969.
  19. Wojdasiewicz P., Poniatowski Ł.A., Kotela A., Deszczyński J., Kotela I., Szukiewicz D. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: Occurrence and potential role in osteoarthritis. Arch. Immunol. Ther. Exp., 2014, vol. 62, no. 5, pp. 395–403. doi: 10.1007/s00005-014-0275-0.
  20. You J.J., Yang C.H., Huang J.S., Chen M.S., Yang C.M. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Invest. Ophthalmol. Visual Sci., 2007, vol. 48, no. 11, pp. 5290–5298. doi: 10.1167/iovs.07-0187.
  21. Ryu J., Lee C.W., Hong K.H., Shin J.A., Lim S.H., Park C.S., Shim J., Nam K.B., Choi K.J., Kim Y.H., Han K.H. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res., 2008, vol.78, no. 2, pp. 333–340. doi: 10.1093/cvr/cvm067.
  22. Prager G.W., Breuss J.M., Steurer S., Mihaly J., Binder B.R. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood, 2004, vol. 103, no. 3, pp. 955–962. doi: 10.1182/blood-2003-07-2214.
  23. Bao P., Kodra A., Tomic-Canic M., Golinko M., Ehrlich H., Brem H. The role of vascular endothelial growth factor in wound healing. J. Surg. Res., 2009, vol. 153, no. 2, pp. 347–358. doi: 10.1016/j.jss.2008.04.023.
  24. Kondo T., Ishida Y. Molecular pathology of wound healing. Forensic Sci. Int., 2010, vol. 203, nos. 1–3, pp. 93–98. doi: 10.1016/j.forsciint.2010.07.004.
  25. Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev., 2003, vol. 14, nos. 3–4, pp. 185–191. doi: 10.1016/s1359-6101(03)00022-4.
  26. Sainson R.C., Johnston D.A., Chu H.C., Holderfield M.T., Nakatsu M.N., Crampton S.P., Davis J., Conn E., Hughes C.C. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood, 2008, vol. 111, no. 10, pp. 4997–5007. doi: 10.1182/blood-2007-08-108597.
  27. Meuli M., Liu Y., Liggitt D., Kashani-Sabet M., Knauer S., Meuli-Simmen C., Harrison M.R., Adzick N.S., Heath T.D., Debs R.J. Efficient gene expression in skin wound sites following local plasmid injection. J. Invest. Derm., 2001, vol. 116, no. 1, pp. 131–135. doi: 10.1046/j.1523-1747.2001.00139.x.
  28. Gavrilov L.F., Tatarinov V.G. Anatomiya [Anatomy]. Moscow, Meditsina, 1986. 368 p. (In Russian)
  29. Caggiati А., Franceschini M., Heyn R., Rosi С. Skin erythrodiapedesis during chronic venous disorders. J. Vasc. Surg., 2011, vol. 53, no. 6, pp. 1649–1653. doi: 10.1016/j.jvs.2011.01.045.
  30. Hillgruber С., Pöppelmann В., Weishaupt С., Steingräber А., Wessel F., Berdel W.E., Gessner J., Ho-Tin-Noé В., Vestweber D., Goerge Т. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia. J. Exp. Med., 2015, vol. 212, no. 8, pp. 1255–1266. doi: 10.1084/jem.20142076.

The content is available under the license Creative Commons Attribution 4.0 License.