Yu.A. Nefedyev , A.O. Andreev∗∗ , N.Yu. Demina∗∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: star1955@yandex.ru, ∗∗alexey-andreev93@mail.ru∗∗∗vnu357@mail.ru

Received May 25, 2020

Full text PDF

DOI: 10.26907/2541-7746.2020.4.481-491

For citation: Nefedyev Yu.A., Andreev A.O., Demina N.Yu. The study of selenophysical parameters with the use of the noise-immune method of robust estimates. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 4, pp. 481–491. doi: 10.26907/2541-7746.2020.4.481-491. (In Russian)

Abstract

This work is dedicated to the issues of reducing long-period series of astronomical observations. Such series contain both unequal and erroneous observations. Determination of the desired parameters from such observations is, thus, a rather complicated task. The main challenge is fair assessment of the accuracy of results produced. There are a number of methods for solving this problem, but the most suitable one for determining noise-immune estimates is the Huber M-estimator method (NIHEM). The selenophysical parameters were found by the analysis of measurements of the Mösting A crater from the Kaguya and Apollo lunar missions and from the heliometric observations. Such observations have a complex internal structure, and their analysis with the use of the method of least squares makes it impossible to either assess and eliminate erroneous measurements or take into account the unequal accuracy of the observations taken. Hence, to derive the desired selenophysical parameters, the NIHEM approach was used. As a result, the values and estimates of the Mösting A crater’s radius-vector, its selenographic longitude and latitude, lunar obliquity, values of harmonics in the expansion of physical libration into longitude, and corrections to the mean radius of the Moon were obtained.

Keywords: M-estimator method, noise-immune robust analysis, selenographic observations, planetary parameters

Acknowledgments. The study was supported in part by the Russian Science Foundation (project no. 20-12-00105 – the method of data analysis was developed and numerical calculations were performed), as well as by the Russian Foundation for Basic Research (project no. 19-32-90024), and Theoretical Physics and Mathematics Advancement Foundation “BASIS”. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. Nefedjev Yu.A., Rizvanov N.G. The results of an accurate analysis of EAO charts of the Moon marginal zone constructed on the basis of lunar occultations. Astron. Nachr., 2002, vol. 323, no. 2, pp. 135–138. doi: 10.1002/1521-3994(200207)323:2¡135::AID-ASNA135¿3.0.CO;2-8.
  2. Huber P.J., Kleiner B., Gasser T., Dumermuth G. Statistical methods for investigating phase relations in stationary stochastic processes. IEEE Trans. Audio Electroacoust., 1971, vol. 19, no. 1, pp. 78–86. doi: 10.1109/TAU.1971.1162163.
  3. Andreev A.O., Nefedyev Yu.A., Nefediev L.A., Ahmedshina E.N., Demina N.Yu., Zagidullin A.A. The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 2, pp. 223–236. doi: 10.26907/2541-7746.2020.2.223-236.
  4. Duchnowski R. Sensitivity of robust estimators applied in strategy for testing stability of reference points. Geod. Cartogr., 2011, vol. 60, no. 2, pp. 123–134. doi: 10.2478/v10277-012-0011-z.
  5. Andreev A.O., Nefedyev Yu.A., Demina N.Yu., Nefediev L.A., Petrova N.K., Zagidullin A.A. Development of methods for navigational referencing of circumlunar spacecrafts to the selenocentric dynamic coordinate system. Astron. Rep., 2020, vol. 64, no. 9, pp. 795–803. doi: 10.1134/S1063772920100017.
  6. Yang Y., Cheng M.K., Shum C.K., Tapley B.D. Robust estimation of systematic errors of satellite laser range. J. Geod., 1999, vol. 73, no. 7, pp. 345–349. doi: 10.1007/s001900050252.
  7. Nefedyev Yu.A., Andreev A.O., Petrova N.K., Demina N.Yu., Zagidullin A.A. Creation of a global selenocentric coordinate reference frame. Astron. Rep., 2018, vol. 62, no. 12, pp. 1016–1020. doi: 10.1134/S1063772918120119.
  8. Nowel K., Kamin´ski W. Robust estimation of deformation from observations’ differences (REDOD) for free monitoring networks. J. Geod., 2018, vol. 88, no. 8, pp. 749–764. doi: 10.1007/s00190-014-0719-7.
  9. Wisniewski Z. Estimation of parameters in a split functional model of geodetic observations (Msplit estimation). J. Geod., 2009, vol. 83, no. 2, pp. 105–120. doi: 10.1007/s00190-008-0241-x.
  10. Huber P.J. Robust estimation of a location parameter. In: Kotz S., Johnson N.L. (Eds.) Breakthroughs in Statistics. New York, Springer, 1992, pp. 492–518.
  11. Williams J.G., Konopliv A.S., Boggs D.H., Park R.S., Yuan D.-N., Lemoine F.G., Goossens S., Mazarico E., Nimmo F., Weber R.C., Asmar S.W., Melosh H.J., Neumann G.A., Phillips R.J., Smith D.E., Solomon S.C., Watkins M.M., Wieczorek M.A., Andrews-Hanna J.C., Head J.W., Kiefer W.S., Matsuyama I., McGovern P.J., Taylor G.J., Zuber M.T. Lunar interior properties from the GRAIL mission. J. Geophys. Res.: Planets, 2014, vol. 119, no. 7, pp. 1546–1578. doi: 10.1002/2013JE004559.
  12. Petrova N.K., Nefedyev Yu.A., Zagidullin A.A., Andreev A.O. Use of an analytical theory for the physical libration of the Moon to detect free nutation of the lunar core. Astron. Rep., 2018, vol. 62, no. 12, pp. 1021–1025. doi: 10.1134/S1063772918120120.
  13. Van Brussel H., Wyns J., Valckenaers P., Bongaerts L., Peeters P. Reference architecture for holonic manufacturing systems PROSA. Comput. Ind., 1998, vol. 37, no. 3, pp. 255– 274. doi: 10.1016/S0166-3615(98)00102-X.
  14. Petrova N.K., Nefedyev Yu.A., Andreev A.O., Zagidullin A.A. Lunar-based measurements of the Moon’s physical libration: Methods and accuracy estimates. Astron. Rep., 2020, vol. 64, no. 12, pp. 1078–1086. doi: 10.1134/S1063772920120094.
  15. Bianco A.M., Garcia Ben M., Yohai V.J. Robust estimation for linear regression with asymmetric errors. Can. J. Stat., 2005, vol. 33, no. 4, pp. 511–528.
  16. Kronrod E.V., Kronrod V.A., Kuskov O.L., Nefedyev Yu.A. Geochemical constraints for the bulk composition of the Moon. Dokl. Earth Sci., 2018, vol. 483, no. 1, pp. 1475–1479. doi: 10.1134/S1028334X18110211.
  17. Zagidullin A.A., Usanin V.S., Petrova N.K., Nefedyev Yu.A., Andreev A.O., Gudkova T.V. Physical libration of the Moon: An extended problem. Astron. Rep., 2020, vol. 64, no. 12. pp. 1093–1106. doi: 10.1134/S1063772921010066.
  18. Varaksina N.Y., Nefedyev Y.A., Churkin K.O., Zabbarova R.R., Demin S.A. Selenocentric reference coordinates net in the dynamic system. J. Phys.: Conf. Ser., 2015, vol. 661, no. 1, art. 012014, pp. 1–4. doi: 10.1088/1742-6596/661/1/012014.

The content is available under the license Creative Commons Attribution 4.0 License.