A.F. Abdullin a , E.V. Voronina a∗∗ , L.V. Dobysheva b∗∗∗

Kazan Federal University, Kazan, 420008 Russia

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, 426067 Russia

E-mail: ayazik@bk.ru, ∗∗Elena.Voronina@kpfu.ru, ∗∗∗lyuka17@mail.ru

Received February 4, 2020

Full text PDF

DOI: 10.26907/2541-7746.2020.4.455-466

For citation: Abdullin A.F., Voronina E.V., Dobysheva L.V. Magnetic parameters of Fe–Al–Ga ternary system: Ab initio calculations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 4, pp. 455–466. doi: 10.26907/2541-7746.2020.4.455-466. (In Russian)

Abstract

Quantum mechanical calculations of the magnetic parameters in the ternary system Fe–Al–Ga for different contents of Al and Ga were carried out. The equilibrium values of the lattice constant, as well as the average values of magnetic moments and hyperfine magnetic fields were calculated. It was shown that the change in the magnetic parameters during the replacement of aluminum with gallium is mainly due to a change in the lattice parameter. The results obtained were compared with the experimental data.

Keywords: ab initio calculations, ternary system Fe–Al–Ga, magnetic moments, hyperfine magnetic fields

Acknowledgments. This study was supported by the subsidy allocated to Kazan Federal University for the state assignment in the area of scientific activities (project no. 3.7352.2017/8.9) and as part of the state assignment no. AAAA-A17-117022250038-7 of the Ministry of Science and Higher Education of the Russian Federation.

References

  1. Konrad J., Zaefferer S., Schneider A., Raabe D., Frommeyer G. Hot deformation behavior of a Fe 3 Al-binary alloy in the A2 and B2-order regimes. Intermetallics, 2005, vol. 13, no. 12: Discuss. Meet. Dev. Innovative Iron Alum. Alloys, pp. 1304–1312.
  2. Liu C.T., George E.P., Maziasz P.J., Schneibel J.H. Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng., A., 1998, vol. 258, nos. 1–2, pp. 84–98.
  3. Bormio-Nunes C., Hubert O. Piezomagnetic behavior of Fe–Al–B alloys. J. Magn. Magn. Mater., 2015, vol. 393, no. 3, pp. 404–418. doi: 10.1016/j.jmmm.2015.05.091.
  4. Restorff J.B., Wun-Fogle M., Clark A.E., Lograsso T.A., Ross A.R., Schlagel D.L. Magnetostriction of ternary Fe–Ga–X alloys (X = Ni, Mo, Sn, Al). J. Appl. Phys., 2002, vol. 91, no. 10, pp. 8225–8227. doi: 10.1063/1.1452220.
  5. Manchon A., Ryzhanova N., Vedyayev A., Dieny B. Spin-dependent diffraction at ferromagnetic/spin spiral interface. J. Appl. Phys., 2008, vol. 103, no. 7, art. 07A721, pp. 1–3. doi: 10.1063/1.2837479.
  6. Noakes D.R., Arrott A.S., Belk M.G., Deevi S.C., Huang Q.Z., Lynn J.W., Shull R.D., Wu D. Incommensurate spin density waves in iron aluminides. Phys. Rev. Lett., 2003, vol. 91, no. 21, art. 217201, pp. 1–4. doi: 10.1103/PhysRevLett.91.217201.
  7. Voronina E.V., Arzhnikov A.K., Chumakov A.I., Chistyakova N.I., Ivanova A.G., Pyataev A.V., Korolev A.V. Magnetic phase separation and magnetic moment alignment in ordered alloys Fe 65 Al 35x M −x (M −x = Ga, B; x = 0; 5 at.%). Adv. Condens. Matter Phys., 2018, vol. 2018, art. 5781873, pp. 1–8. doi: 10.1155/2018/5781873.
  8. Voronina E.V., Ivanova A.G., Arzhnikov A.K., Chumakov A.I., Chistyakova N.I., Pyataev A.V., Korolev A.V. Magnetic state of quasiordered Fe–Al alloys doped with Ga and B: Magnetic phase separation and spin order. Phys. Solid State, 2018, vol. 60, no. 4, pp. 730–737. doi: 10.1134/S1063783418040340.
  9. Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transitionmetal aluminides. Phys. Rev. B, 1999, vol. 59, no. 10, pp. 6824–6833.
  10. Das G.P., Rao B.K., Jena P., Deevi S.C. Electronic structure of substoichiometric Fe–Al intermetallics. Phys. Rev. B, 2002, vol. 66, no. 18, art. 184203, pp. 1–13. doi: 10.1103/PhysRevB.66.184203.
  11. Arzhnikov A.K., Dobysheva L.V., Timirgazin M.A. Formation and ordering of local magnetic moments in Fe–Al alloys. J. Magn. Magn. Mater., 2008, vol. 320, no. 13, pp. 1904– 1908. doi: 10.1016/j.jmmm.2008.02.114.
  12. Marchant G.A., Patrick C.E., Staunton J.B. Ab initio calculations of temperature-dependent magnetostriction of Fe and A2 Fe 1x within the disordered local moment picture Phys. Rev. B, 2019, vol. 99, no. 5, art. 054415, pp. 1–12. doi: 10.1103/Phys-RevB.99.054415.
  13. Golovin I.S. Anelasticity of Fe–Ga based alloys. Mater. Des., 2015, vol. 88, pp. 577–587. doi: 10.1016/j.matdes.2015.08.160.
  14. Matyunina M.V., Zagrebin M.A., Sokolovskii V.V., Buchel’nikov V.D. Ab initio calculation of structure and magnetic properties of Fe 1x Ga x alloys. Chelyab. Fiz.-Mst. Zh., 2016, vol. 1, no. 4, pp. 112–121. (In Russian)
  15. Petrik M.V., Gorbatov O.I., Gornostyrev Yu.N. Role of magnetism in the formation of a short-range order in an Fe–Ga alloy. Pis’ma ZhETF, 2013, vol. 98, no. 14, pp. 912–915. (In Russian)
  16. Wu R. Origin of large magnetostriction in FeGa alloys. J. Appl. Phys., 2002, vol. 91, no. 10, pp. 7358–7360. doi: 10.1063/1.1450791
  17. Wang H., Zhang Y.N., Wu R.Q., Sun L.Z., Xu D.S., Zhang Z.D. Understanding strong magnetostriction in Fe 100x Ga x alloys. Sci. Rep., 2013, vol. 3, art. 3521, pp. 1–5. doi: 10.1038/srep03521.
  18. Restorff J.B., Wun-Fogle M., Hathaway K.B., Clark A.E., Lograsso T.A., Petculescu G. Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe– Si, Fe–Ga–Al, and Fe–Ga–Ge alloys. J. Appl. Phys., 2012, vol. 111, no. 2, art. 023905, pp. 1–12. doi: 10.1063/1.3674318
  19. Cullen J.R., Clark A.E., Wun-Fogle M., Restorff J.B., Lograsso T.A. Magnetoelasticity of Fe–Ga and Fe–Al alloys. J. Magn. Magn. Mater., 2001, vols. 226–230, pt. 1, pp. 948–949. doi: 10.1016/S0304-8853(00)00612-0.
  20. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865.
  21. Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J., Laskowski R., Tran F., Marks L.D. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Wien, Vienna Univ. Technol., 2018. 287 p.
  22. Arzhnikov A.K., Dobysheva L.V. Formation of magnetic characteristics and hyperfine fields in metal–metalloid alloys. Comput. Mater. Sci., 2002, vol. 24, nos. 1–2, pp. 203– 207. doi: 10.1016/S0927-0256(02)00188-X.
  23. Shpinel’ V.S. Rezonans gamma-luchei v kristallakh [Resonance of Gamma Rays in Crystals]. Moscow, Nauka, 1969. 408 p. (In Russian)
  24. Arzhnikov A.K., Dobysheva L.V., Brauers F. Local magnetic moments and hyperfine magnetic fields in Fe–M (M=Si, Sn) alloys at small metalloid concentrations. Phys. Solid State, 2000, vol. 42, no. 1, pp. 89–95. doi: 10.1134/1.1131173.

 

The content is available under the license Creative Commons Attribution 4.0 License.