A.M. Fetisova a,b,c*, R.V. Veselovskiy a,b**, M.P. Arefiev d,c***

aLomonosov Moscow State University, Moscow, 119991 Russia

bSchmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, 123242 Russia

cKazan Federal University, Kazan, 420008 Russia

dGeological Institute, Russian Academy of Sciences, Moscow, 119017 Russia

E-mail: *anna-fetis@yandex.ru, **roman.veselovskiy@ya.ru, ***mihail-3000@inbox.ru

Received April 20, 2020

Full text PDF
DOI: 10.26907/2542-064X.2020.2.228-243

For citation: Fetisova A.M., Veselovskiy R.V., Arefiev M.P. New paleomagnetic data on the Permian-Triassic sedimentary sections of the Moscow syneclise. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 2, pp. 228–243. doi: 10.26907/2542-064X.2020.2.228-243. (In Russian)

Abstract

The results of a detailed paleomagnetic study of the following five Permian-Triassic sections of the Russian Platform were discussed: Slukino (Vladimir region), Sartakovo and Prudovka (Nizhny Novgorod region), Klykovo and Gavrino (Vologda region). The study is important and intriguing due to the current lack of any representative and reliable paleomagnetic data on the Permian-Triassic age for Eurasia. These data can be helpful for testing the hypothesis about the possibility of relative movements of Eurasia’s lithospheric blocks in the post-Paleozoic time, as well as about the geocentric axial dipole in the Paleozoic and Mesozoic. In order to obtain new paleomagnetic poles, samples from five most promising and well-dated cross-sections of the Permian-Triassic red beds located on the eastern slope of the Moscow syneclise were taken. Laboratory treatment was carried out with the use of modern equipment and advanced techniques. Stepwise thermal demagnetization showed the presence of a paleomagnetic record of excellent quality in all the studied sections, thereby making it possible to obtain new paleomagnetic data of high accuracy and reliability. The resulting paleomagnetic poles demonstrate a so-called “far-side effect”, i.e., they are shifted relatively to the expected position of the mean Permian-Triassic paleomagnetic pole of the East European Platform along the paleomeridian towards the opposite side of the sampling site. Presumably, the reasons are (a) an inclination shallowing in the studied sedimentary rocks, (b) the presence of a significant contribution of non-dipole components to the main geomagnetic field about 250 million years ago, (c) local tectonics. The results of this study can be of considerable interest for clarifying the paleogeographic position of the East European Platform and testing the hypothesis of tectonic rigidity of Eurasia. Furthermore, they are an imporant factual material for analyzing the key features of the geomagnetic field at the Paleozoic-Mesozoic boundary.

Keywords: Permian, Triassic, paleomagnetism, red beds, Moscow syneclise, East European Platform

Acknowledgements. Paleomagnetic studies were supported by the Russian Foundation for Basic Research (project no. 18-05-00593) and, in part, by the Government of the Russian Federation (project no. 14.Z50.31.0017), as well as by the R&D project performed within the framework of the state assignment to the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences and to the Department of Geology of the Moscow State University and by the subsidy allocated to the Kazan Federal University for the state assignment no. 671-2020-0049 in the sphere of scientific activities. Sedimentological investigations were performed as part of the state assignment no. 0135-2019-0073 to the Geological Institute of the Russian Academy of Sciences.

Figure Captions

Fig. 1. Location of the studied sections (shown as stars) on the tectonic map of Eastern Europe (according to [19] with simplification).

Fig. 2. Magnetic susceptibility anisotropy (MSA) of rock material from the studied sections. Leftwards: stereogram showing the distribution of long, intermediate, and short semi-axes of the MSA oval (K1, K2, and K3, respectively) in the projection on the lower hemisphere. Top right: Jelinek diagram [20] illustrating the dependence of MSA ellipsoid shape (T) – flattened/elongated – on anisotropy degree (P). Bottom right: dependence of the MSA degree on magnetic susceptibility (Km).

Fig. 3. Directions of the characteristic magnetization components for the studied outcrops at the level of samples and their mean values with the confidence level of 95%.

Fig. 4. Comparison of the obtained paleomagnetic poles with the curve of apparent migration of the paleomagnetic pole of the East European Platform [16].

Fig. 5. Results of the thermal magnetic cleaning of the samples of rocks typical in the studied sections: stereograms, Zijderveld diagrams, and NRM demagnetization curves. Black and white circles on the stereograms indicate the projection of the vector on the upper and lower hemispheres, respectively; black and white circles on the Zijderveld diagrams show the projections of the vector on the horizontal and vertical planes, respectively.

Fig. 6. Range of the virtual geomagnetic poles (Sb) for the studied outcrops as compared with the model curve of secular variations over the last 5 million years [13]. See main text for explanation.

References

  1. Golubev V.K. Boundaries of the Upper Permian system of the East European Platform. Materialy III Vseros. soveshchaniya “Verkhnii paleozoi Rossii: regional’naya stratigrafiya, paleontologiya, geo- i biosobytiya” [Proc. III All-Russ. Conf. “Upper Paleozoic of Russia: Regional Stratigraphy, Paleontology, Geo-and Bioevents”]. St. Petersburg, Izd. VSEGEI, 2012, pp. 68–70. (In Russian)
  2. Naumcheva M.A., Golubev V.K. Ostracod assemblages from the Permian-Triassic boundary layer of the Moscow syneclise. Reg. Geol. Metallog., 2019, no. 80, pp. 21–29. (In Russian)
  3. Arefiev M.P., Golubev V.K., Balabanov Yu.P., Naumcheva M.A. Preliminary correlation of sediments at the Permian-Triassic boundary of the Yug and Vetluga basins. PALEOSTRAT-2017. Godichnoe sobranie (nauch. konf.) sektsii paleontologii MOIP i Mosk. otd-niya Paleontologicheskogo o-va pri RAN: Tez. dokl. [Proc. PALEOSTRAT-2017. Annu. Meet. (Sci. Conf.) of the Section of Paleontology of the Moscow Society of Naturalists and the Paleontological Society of the Russian Academy of Sciences]. Alekseev A.S. (Ed.). Moscow, Paleontol. Inst. im. A.A. Borisyaka Ross. Akad. Nauk, 2017, pp. 6–7. (In Russian)
  4. Sammet E.A., Poluektov T.A. et al. Otchet o kompleksnoi geologo-gidrologicheskoi s”emke basseina r. Maloi Severnoi Dviny masshtaba 1:200 000 za 1968–1971 g. [The Report of the Geohydrological Survey of the Malaya Northern Dvina River Basin (Scale 1:200 000) for 1968–1971]. Kotlas, Sev.-Zapadn. Territ. Geol. Upr., 1972. (In Russian)
  5. Arefiev M.P., Golubev V.K., Kuleshov V.N., Kukhtinov D.A., Minikh A.V., Pokrovskii B.G., Silantiev V.V., Urazaeva M.N., Shkurskii B.B., Yaroshenko O.P., Grigor’eva A.V., Naumcheva M.A. Complex paleontological, sedimentological, and geochemical analysis of terminal sediments of the Permian system in northeastern part of the Moscow syneclise. 1. Malaya Northern Dvina River basin. Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 2016, vol. 91, no. 1, pp. 24–49. (In Russian)
  6. Paleomagnitologiya [Paleomagnetology]. Khramov A.N. (Ed.). Leningrad, Nedra, 1982. 312 p. (In Russian)
  7. Tauxe L., Banerjee S.K., Butler R.F., Van der Voo R. Essentials of Paleomagnetism: Fifth Web Edition. 2020. Available at: https://earthref.org/MagIC/books/Tauxe/Essentials/.
  8. Enkin R.J. A computer program package for analysis and presentation of paleomagnetic data. 1994. 16 p. Available at: http://palaeo.spb.ru/pmlibrary/pmpapers/enkin_1994.pdf.
  9. Chadima M., Hrouda F. Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Trav. Geophys., 2006, vol. XXVII, pp. 20–21.
  10. Koymans M.R., Langereis C.G., Pastor-Galan D., van Hinsbergen D.J.J. Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis. Comput. Geosci., 2016, vol. 93, pp. 127–137. doi: 10.1016/j.cageo.2016.05.007.
  11. Kirschvink J.L. The least-square line and plane and the analysis of paleomagnetic data. Geophys. J. Int., 1980, vol. 62, no. 3, pp. 699–718. doi: 10.1111/j.1365-246X. 1980.tb02601.x.
  12. Tauxe L., Kent D.V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? In: Timescales of the Paleomagnetic Field. Washington, D.C., Am. Geophys. Union, 2004, vol. 145, pp. 101–116. doi: 10.1029/145GM08.
  13. Johnson C.L., Constable C.G., Tauxe L., Barendregt R., Brown L.L., Coe R.S., Layer P., Mejia V., Opdyke N.D., Singer B.S., Staudigel H., Stone D.B. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows. Geochem., Geophys., Geosyst., 2008, vol. 9, no. 4, art. Q04032, pp. 1–31. doi: 10.1029/2007GC001696.
  14. McFadden P.L., McElhinny M.W. Classification of the reversal test in palaeomagnetism. Geophys. J. Int., 1990, vol. 103, no. 3, pp. 725–729. doi: 10.1111/j.1365-246X.1990.tb05683.x.
  15. Pavlov V.E., Fluteau F., Latyshev A.V., Fetisova A.M., Elkins‐Tanton L.T., Black B.A., Burgess S.D., Veselovskiy R.V. Geomagnetic secular variations at the Permian‐Triassic boundary and pulsed magmatism during eruption of the Siberian Traps. Geochem., Geophys., Geosyst., 2019, vol. 20, no. 2, pp. 773–791. doi: 10.1029/2018GC007950.
  16. Torsvik T.H., Van der Voo R., Preeden U., Niocaill С., Steinberger B., Doubrovine P., Hinsbergen D., Domeier M., Gaina C., Tohver E., Meert J., McCausland P., Cocks R. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev., 2012, vol. 114, nos. 3–4, pp. 325–368. doi: 10.1016/j.earscirev.2012.06.007.
  17. Fetisova A.M., Veselovskiy R.V., Balabanov Yu.P., Sal’naya N.V. Inclination shallowing in the Permian/Triassic boundary sedimentary sections of the Middle Volga region in light of the new paleomagnetic data. Izv., Phys. Solid Earth, 2017, vol. 53, no. 5, pp. 635–644. doi: 10.1134/S1069351317040024.
  18. McElhinny M.W., McFadden P.L. Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophys. J. Int., 1997, vol. 131, no. 2, pp. 240–252. doi: 10.1111/j.1365246X.1997.tb01219.x.
  19. Biske Yu.S. Geologiya Rossii [Russian Geology]. St. Petersburg, Izd. S.-Peterb. Univ., 2019. 228 p. (In Russian)
  20. Jelinek V. Characterization of the magnetic fabric of rocks. Tectonophysics, 1981, vol. 79, nos. 3–4, pp. T63–T67. doi: 10.1016/0040-1951(81)90110-4.

The content is available under the license Creative Commons Attribution 4.0 License.