A.K. Gilfanova∗ , R.R. Salakhova∗∗ , T.S. Zaripovb∗∗∗

Kazan Federal University, Kazan, 420008 Russia

University of Brighton, Brighton, BN2 4AT England

E-mail: artur.gilfanov@kpfu.ru, ∗∗ramms92@mail.ru, ∗∗∗T.Zaripov2@brighton.ac.uk

Received March 23, 2020

Full text PDF

DOI: 10.26907/2541-7746.2020.2.120-136

For citation : Gilfanov A.K., Salakhov R.R., Zaripov T.S. Mathematical modeling of the dynamics of inertial polydisperse particles in a vortex flow. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 2, pp. 120–136. doi: 10.26907/2541-7746.2020.2.120-136. (In Russian)

Abstract

The quadrature method of moments was used for solving the problem of modeling the dynamics of inertial polydisperse particles. Dispersed phase models that assumed particle distribution over size, mean velocity for all particles, and mean velocity conditioned by particle size were implemented. The comparison of the models was performed in the problem of moving evaporating particles in the vortex flow with using the Lagrangian approach as a reference method. The qualitative agreement of particle number density fields obtained by the methods of moments and the Lagranigan approach was demonstrated. It was shown that using models with two and three conditioned mean velocities results in the qualitative agreement of the mean size and variance fields obtained by the methods of moments and the Lagranigan approach.

Keywords: method of moments, polydisperse aerosol, vortex flow, inertial particles

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 18-31-00387).

References

  1. Crowe C.T. Review–numerical models for dilute gas-particle flows. J. Fluids Eng., 1982, vol. 104, no. 3, pp. 297–303. doi: 10.1115/1.3241835.
  2. De Chaisemartin S., Freret L., Kah D., Laurent F., Fox R.O., Reveillon J., Massot M. Turbulent combustion of polydisperse evaporating sprays with droplet crossing: Eulerian modeling and validation in the infinite Knudsen limit. Proc. 2008 Summer Program, Center for Turbulence Research. Stanford, Calif., 2008, pp. 265–276.
  3. Desjardins O., Fox R.O., Villedieu P. A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys., 2008, vol. 227, no. 4, pp. 2514–2539. doi: 10.1016/j.jcp.2007.10.026.
  4. Emre O., Kah D., Jay S., Tran Q.-H., Velghe A., De Chaisemartin S., Fox R.O., Laurent F., Massot M. Eulerian moment methods for automotive sprays. Atomization Sprays, 2015, vol. 25, no. 3, pp. 189–254. doi: 10.1615/AtomizSpr.2015011204ff.
  5. Fan R., Marchisio D.L., Fox R.O. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technol., 2004, vol. 139, no. 1, pp. 7–20. doi: 10.1016/j.powtec.2003.10.005.
  6. Gordon R.G. Error bounds in equilibrium statistical mechanics. J. Math. Phys., 1968, vol. 9, no. 5, pp. 655–663. doi: 10.1063/1.1664624.
  7. Kah D., Laurent F., Massot M., Jay S. A high order moment method simulating evaporation and advection of a polydisperse liquid spray. J. Comput. Phys., 2012, vol. 231, no. 2, pp. 394–422. doi: 10.1016/j.jcp.2011.08.032.
  8. Kaplanski F.B., Rudi Y.A. A model for the formation of “optimal” vortex rings taking into account viscosity. Phys. Fluids, 2005, vol. 17, no. 8, pp. 087101-1-087101-7. doi: 10.1063/1.1996928.
  9. Kaplanski F.B., Sazhin S.S., Fukumoto Y., Begg S., Heikal M. A generalized vortex ring model. J. Fluid Mech., 2009, vol. 622, pp. 233–258. doi: 10.1017/S0022112008005168.
  10. Marchisio D.L., Fox R.O. Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge, Cambridge Univ. Press, 2013. 544 p. doi: 10.1017/CBO9781139016599.
  11. Massot M., Laurent F., Kah D., De Chaisemartin S. A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl. Math., 2010, vol. 70, no. 8, pp. 3203–3234. doi: 10.1137/080740027.
  12. McGraw R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol., 1997, vol. 27, no. 2, pp. 255–265. doi: 10.1080/02786829708965471.
  13. Rybdylova O., Sazhin S.S., Osiptsov A.N., Kaplanski F.B., Begg S., Heikal M. Modelling of a two-phase vortex-ring flow using an analytical solution for the carrier phase. Appl. Math. Comput., 2018, vol. 326, pp. 159–169. doi: 10.1016/j.amc.2017.12.044.
  14. Vikas V., Wang Z.J., Passalacqua A., Fox R.O. Realizable high-order finite-volume schemes for quadrature-based moment methods. J. Comput. Phys., 2011, vol. 230, no. 13, pp. 5328–5352. doi: 10.1016/j.jcp.2011.03.038.
  15. Wheeler J.C. Modified moments and Gaussian quadratures. Rocky Mt. J. Math., 1974, vol. 4, no. 2, pp. 287–296.
  16. Williams F.A. Spray combustion and atomization. Phys. Fluids, 1965, vol. 1, no. 6, pp. 541–545. doi: 10.1063/1.1724379.

 

The content is available under the license Creative Commons Attribution 4.0 License.