E.V. Skvortsov*, Rish.S. Muhammadiev**, Rin.S. Muhammadiev, L.R. Valiullin***

Federal Center of Toxicological, Radiation, and Biological Safety –

All-Russian Research Veterinary Institute, Kazan, 420075 Russia

E-mail: *eskvortsov@rambler.ru, **tanirtashir@mail.ru, ***valiullin27@mail.ru

Received December 18, 2019

Full text PDF

DOI: 10.26907/2542-064X.2020.1.112-122

For citation: Skvortsov E.V., Muhammadiev Rish.S., Muhammadiev Rin.S., Valiullin L.R. Erythromycin effect on the intestinal microbial community of rats. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 112–122. doi: 10.26907/2542-064X.2020.1.112-122. (In Russian)

Abstract

The effect of erythromycin on the intestinal microbial community of laboratory rats was studied. The research is important for the practical purposes of animal farming and veterinary medicine, because a significant increase in the abundance of pathogenic microorganisms caused by antibiotic treatment turns the intestine into a reservoir of infections resistant to antibiotics, which need to be combated efficiently. To solve this problem, both rapid and accurate methods must be elaborated for quantitative determination of the main bacteria in the intestine during the use of antibiotics, such as erythromycin. We used genetic analysis (real-time polymerase chain reaction) to study the intestinal microflora of male rats aged 8 weeks. All rats were divided into two groups: the control group (n = 10); the experimental group (n = 10) that received orally administered erythromycin. The abundance of the main intestinal bacteria was determined from fecal samples. The content of several variations of erm (erythromycin resistance) genes in the intestinal microflora was also investigated. The obtained results demonstrate that erythromycin causes a significant increase in the abundance of Clostridium difficile and Staphylococcus aureus, as well as in the number of erm genes. These data can be considered a further advance in our understanding of prospects and consequences of antibiotic therapy in animal farming and veterinary medicine.

Keywords: intestinal microbial community, erythromycin, genetic analysis, erythromycin resistance genes

Figure Captions

Fig. 1. Diagrams of changes in the abundance of major groups of intestinal bacteria induced by the oral administration of erythromycin. Upper diagram: total bacterial mass, Lactobacillus spp., Bifidobacterium spp., Escherichia coli. Bottom diagram: Bacteroides fragilis group, Faecalibacterium prausnitzii, Clostridium difficile, Staphylococcus aureus. Real-time polymerase chain reaction with fluorescence detection.

References

  1. OIE Global Conference on the Responsible and Prudent Use of Antimicrobial Agents for Animals “International solidarity to fight against antimicrobial resistance” Paris, France, 13–15 March 2013: Recommendations. Available at: https://www.oie.int/eng/a_amr2013/Recommendations_ AMR_2013.pdf.
  2. EU Commission Notice No. 2015/C 299/04. Guidelines for the prudent use of antimicrobials in veterinary medicine. Off. J. Eur. Union, 2015, vol. 299, pp. 7–29.
  3. Spaepen K.R., Van Leemput L.J., Wislocki P.G., Verschueren C. A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environ. Toxicol. Chem., 1997, vol. 16, no. 9, pp. 1977–1982. doi: 10.1002/etc.5620160930.
  4. Kim K.R., Owens G., Kwon S.I., So K.H., Lee D.B., Ok Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, Soil Pollut., 2011, vol. 214, pp. 163–174. doi: 10.1007/s11270-010-0412-2.
  5. Ok Y.S, Kim S.C., Kim K.R., Lee S.S., Moon D.H., Lim K.J., Sung J.K., Hur S.O., Yang J.E. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ. Monit. Assess., 2011, vol. 174, nos. 1–4, pp. 693–701. doi: 10.1007/s10661-010-1625-y.
  6. Linton A.H., Hedges A.J., Bennett P.M. Monitoring for the development of antimicrobial resistance during the use of olaquindox as feed additive on commercial pig farms. J. Appl. Bacteriol., 1988, vol. 64, no. 4, pp. 311–327. doi: 10.1111/j.1365-2672.1988.tb01876.x.
  7. Hammerum A.M., Jensen L.B., Aarestrup F.M. Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol. Lett., 1998, vol. 168, no. 1, pp. 145–151. doi: 10.1111/j.1574-6968.1998.tb13267.x.
  8. Salyers A.A., Amábile-Cuevas C.F. Why are antibiotic genes so resistant to elimination? Antimicrob. Agents Chemother., 1997, vol. 41, no. 11, pp. 2321–2325. doi: 10.1128/AAC.41.11.2321.
  9. Ley R.E. Harnessing microbiota to kill a pathogen: the sweet tooth of Clostridium difficile. Nat. Med., 2014, vol. 20, no. 3, pp. 248–249. doi: 10.1038/nm.3494.
  10. Lessa F.C., Mu Y., Bamberg W.M., Beldavs Z.G., Dumyati G.K., Dunn J.R., Farley M.M., Holzbauer S.M., Meek J.I., Phipps E.C., Wilson L.E., Winston L.G., Cohen J.A., Limbago B.M., Fridkin S.K., Gerding D.N., McDonald L.C. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med., 2015, vol. 372, no. 9, pp. 825–833. doi: 10.1056/NEJMoa1408913.
  11. Kelly C.P, Pothoulakis C, LaMont J.T. Clostridium difficile colitis. N. Engl. J. Med., 1994, vol. 330, no. 4, pp. 257–262. doi: 10.1056/NEJM199401273300406.
  12. Barthélémy P., Autissier D., Gerbaud G., Courvalin P. Enzymatic hydrolysis of erythromycin by a strain of Escherichia coli. A new mechanism of resistance. J. Antibiot. (Tokyo), 1984, vol. 37, no. 12, pp. 1692–1696. doi: 10.7164/antibiotics.37.1692.
  13. Funk I.A., Irkitova A.N. Biotechnological potential of bifidobacteria. Acta Biol. Sib., 2016, vol. 2, vol. 4, pp. 67–79. doi: 10.14258/abs.v2i4.1634.
  14. Sapkota A.R., Ojo K.K., Roberts M.C., Schwab K.J. Antibiotic resistance genes in multidrug-resistant Enterococcus spp. and Streptococcus spp. recovered from the indoor air of a large-scale swine-feeding operation. Lett. Appl. Microbiol., 2006, vol. 43, no. 5, pp. 534–540. doi: 10.1111/j.1472-765X.2006.01996.x.
  15. Botina S.G., Poluektova E.U., Glazova A.A., Zakharevich N.V., Koroban N.V., Zinchenko V.V., Babykin M.M., Zhilenkova O.G., Amerkhanova A.M., Danilenko V.N. Antibiotic resistance of potential probiotic bacteria of the genus Lactobacillus from human gastrointestinal microbiome. Microbiology, 2011, vol. 80, no. 2, pp. 164–171. doi: 10.1134/S0026261711020032.
  16. van Hoek A.H., Margolles A., Domig K.J., Korhonen J.M., Zycka-Krzesinska J., Bardowski J.K., Danielsen M., Huys G., Morelli L., Aarts H.J.M. Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int. J. Probiotics Prebiotics, 2008, vol. 3, pp. 271–280.
  17. Gilbert D.N. Aspects of the safety profile of oral antimicrobial agents. Infect. Dis. Clin. Pract., 1995, vol. 4, suppl. 2, pp. S10 –S112.

 

The content is available under the license Creative Commons Attribution 4.0 License.