L.G. Shaidarova*, A.V. Gedmina**, I.E. Rogozhin***, I.A. Chelnokova****, H.C. Budnikov*****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *LarisaShaidarova@mail.ru, **Anna.Gedmina@kpfu.ru, ***rogozhin.09@mail.ru, ****Irina.Chelnokova@kpfu.ru, *****Herman.Budnikov@kpfu.ru

Received January 27, 2020

Full text PDF

DOI: 10.26907/2542-064X.2020.1.69-79

For citation: Shaidarova L.G., Gedmina A.V., Rogozhin I.E., Chelnokova I.A., Budnikov H.C. Voltammetric determination of paracetamol in drugs using an electrode modified by poly(3,4-ethylendioxythiophene) film with a gold deposit. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 69–79. doi: 10.26907/2542-064X.2020.1.69-79. (In Russian)

Abstract

A composite film of poly-3,4-ethylenedioxythiophene (PEDOT) with a gold deposit (Au-PEDOT-GCE) on the surface of a glassy carbon electrode (GCE) shows electrocatalytic activity in the oxidation of paracetamol. Working conditions for the immobilization of the Au-PEDOT composite on the GCE were determined. A method for the voltammetric determination of paracetamol on Au-PEDOT-GCE was proposed. It was revealed that the dependence of the oxidation current of paracetamol on its concentration is linear in the range from 1·10–7 to 1·10–3 mol·L–1. The developed voltammetric method was tested to determine paracetamol in drugs.

Keywords: composite film of poly-3,4-ethylenedioxythiophene with gold deposit, electrocatalysis, voltammetric determination of paracetamol

Acknowledgments. The study is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Figure Captions

Fig. 1. Cyclic voltammetrograms obtained from the EDOT solution in CH3CN containing 0.1 M LiClO4 with multiple potential cycling at the potential sweep rate of 70 mV/sec.

Fig. 2. Cyclic voltammetry on the GCE (curve 1) and PEDOT-GCE (curve 2) with paracetamol in a pH 6.86 phosphate buffer background (a), dependence of the oxidation current of paracetamol on its concentration (b).

Fig. 3. Dependence of the oxidation current of paracetamol on the PEDOT-GCE electrode on the conditions of PEDOT electropolymerization (potential cycling areas, number of cycles) (a) and on the number of film activation cycles (b).

Fig. 4. Cyclic voltammetry on the Au-GCE electrode without (curve 1) and with (curve 2) of paracetamol in a pH 6.86 phosphate buffer background.

Fig. 5. Dependence of the oxidation current of paracetamol on time (a) and potential (b) of deposition of gold particles on the PEDOT-GCE electrode.

Fig. 6. Dependence of the oxidation current of paracetamol on the PEDOT-GCE on the square root of potential superposition rate (a), on the potential superposition rate in logarithmic coordinates (b).

References

  1. Budnikov H.C., Evtyugin G.А., Maistrenko В.N. Modifitsirovannye elektrody dlya vol’tamerometrii v khimii, biologii i meditsine [Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine]. Moscow, BINOM. Lab. Znanii, 2010. 416 p. (In Russian)
  2. Shaidarova L.G., Budnikov G.К. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem., 2008, vol. 63, no. 10, pp. 922–942. doi: 10.1134/S106193480810002X.
  3. Podlovchenko B.I., Andreev V.N. Electrocatalysis on polymer-modified electrodes. Russ. Chem. Rev., 2002, vol. 71, pp. 837–851. doi: 10.1070/RC2002v071n10ABEH000672.
  4. Naarmann H. Polymers, electrically conducting. In: Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Wiley-VCH, 2002. doi: 10.1002/14356007.a21_429.
  5. Tarasevich M.R., Оrlov S.B., Shkol’nikov E.I. Elektrokhimiya polimerov [Electrochemistry of Polymers]. Moscow, Nauka, 1990. 238 p. (In Russian)
  6. Yoon H., Chang M., Jang J. Formation of 1D poly (3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv. Funct. Mater., 2007, vol. 17, no. 3, pp. 431–436. doi: 10.1002/adfm.200600106.
  7. Hui Y., Bian C., Xia Sh., Tong J., Wang J. Synthesis and electrochemical sensing application of poly-(3,4- ethylenedioxythiophene)-based materials: A review. Anal. Chim. Acta, 2018, vol. 1022, pp. 1–19. doi: 10.1016/j.aca.2018.02.080.
  8. Yang L., Zhang J., Zhao F., Zeng B. Electrodeposition of self-assembled poly(3,4-ethylenedioxy­thiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons. J. Chromatogr. A., 2016, vol. 1471, pp. 80–86. doi: 10.1016/j.chroma.2016.10.041.
  9. Doğan B., Elik A., Altunay N. Determination of paracetamol in synthetic urea and pharmaceutical samples by shaker-assisted deep eutectic solvent microextraction and spectrophotometry. Microchem. J., 2020, vol. 154, art. 104645, pp. 1–8. doi: 10.1016/j.microc.2020.104645.
  10. Gadallah M.I., Ali H.R.H., Askal H.F., Saleh G.A. Facile HPTLC-densitometric determination of ertapenem and paracetamol in pharmaceuticals and rabbit plasma with pharmacokinetic insights. Microchem. J., 2019, vol. 150, art. 104093, pp. 1–12. doi: 10.1016/j.microc.2019.104093.
  11. Iranifam M., Khodaei S., Saadati M. Chemiluminescence reaction of graphene oxide – luminol – dissolved oxygen and its application for determination of isoniazid and paracetamol. Microchem. J., 2019, vol. 146, pp. 850–855. doi: 10.1016/j.microc.2019.02.022.
  12. Budnikov H.C., Labuda J. Chemically modified electrodes as amperometric sensors in electroanalysis. Russ. Chem. Rev., 1992, vol. 61, no. 8, pp. 816–829. doi: 10.1070/RC1992v061n08ABEH001000.
  13. Kumar M., Swamy B.E.K., Reddy S., Zhao W., Chetana S., Kumar V.G. ZnO/functionalized MWCNT and Ag/functionalized MWCNT modified carbon paste electrodes for the determination of dopamine, paracetamol and folic acid. J. Electroanal. Chem., 2019, vol. 835, pp. 96–105. doi: 10.1016/j.jelechem.2019.01.019.
  14. Wong A., Santos A.M., Silva T.A., Fatibello-Filho O. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT:PSS. Talanta, 2018, vol. 183, pp. 329–338. doi: 10.1016/j.talanta.2018.02.066.
  15. Li M., Wang W., Chen Zh., Song Zh., Luo X. Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sens. Actuators, B, 2018, vol. 260, pp. 778–785. doi: 10.1016/j.snb.2018.01.093.
  16. Brown R.M., Hillman A.R. Electrochromic enhancement of latent fingerprints by poly-(3,4-ethylenedioxythiophene). Phys. Chem. Chem. Phys., 2012, vol. 14, no. 24, pp. 8653–8661. doi: 10.1039/C2CP40733G.
  17. Cosnier S., Karyakin A. Electropolymerization: Concepts, Materials and Applications. Wiley-VCH, 2010. 296 p. doi: 10.1002/9783527630592.

 

The content is available under the license Creative Commons Attribution 4.0 License.