P.A. Nikolaychuk

University of Greifswald, Greifswald, 17487 Germany

E-mail: npa@csu.ru

Received March 5, 2019

Full text PDF

DOI: 10.26907/2542-064X.2020.1.52-68

For citation: Nikolaychuk P.A. Thermodynamic assessment of chemical and electrochemical stability of vanadium silicides. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2020, vol. 162, no. 1, pp. 52–68. doi: 10.26907/2542-064X.2020.1.52-68. (In Russian)

Abstract

The phase and chemical equilibria in the V–Si system at 25 °C were considered. The possible maximum solid solubility of Si in bcc-V at 25 °C was estimated. The thermodynamic activities of the components in this saturated solution were calculated. The state diagram of the V–Si–O system at 25 °C was plotted and the characteristics of their invariant conditions were calculated. The activity – pH diagram for vanadium(V) compounds was plotted. The potential – pH diagram of the V–Si–H2O system at 25 °C, air pressure of 1 bar, and activities of ions in solution equal to 1 mol/L was plotted. The thermodynamic analysis of chemical and electrochemical stability of the V–Si system alloys was performed.

Keywords: V–Si system, vanadium silicides, phase equilibria, low temperature oxidation, chemical and electrochemical stability

Figure Captions

Fig. 1. The state diagram of the V–Si–O system.

Fig. 2. The activity – pH diagram for V(V) compounds at 25 °C and the air pressure of 1 bar.

Fig. 3. The potential – pH diagram of the V–Si–H2O system at 25 °C, air pressure of 1 bar, and activities of ions in solution equal to 1 mol/L.

Fig. 4. The potential – pH diagram of the V–Si–H2O system cut in the area of thermodynamic stability of vanadium silicides. Areas from the diagram are given in the text.

References

  1. Storms E., Myers C.E. Thermodynamics and Phase Equilibria in the Vanadium–Silicon System. Binghamton, 1984. 24 p.
  2. Zhang Ch., Du Y., Xiong W., Xu H., Nash Ph., Ouyang Y., Hu R. Thermodynamic modeling of the V–Si system supported by key experiments. Calphad, 2008, vol. 32, no. 2, pp. 320–325. doi: 10.1016/j.calphad.2007.12.005.
  3. Kieffer R., Schmid H., Benesovsky F. Die Systeme Niob-Silizium und Vanadin-Silizium. In: Plansee proceddings 2. Plansee Seminar “De Re Metallica.” Tirol, Reutte, 1956, pp. 154–165 (In German)
  4. Fellner P., Matiašovský K. Electrolytic silicide coating in fused salts. Electrodeposition Surf. Treat., 1975, vol. 3, no. 4, pp. 235–244. doi: 10.1016/0300-9416(75)90002-4.
  5. Jangg G., Kieffer R., Prem E., Heidler E. Die Korrosionsbeständigkeit der Silicide der Übergangsmetalle. Werkst. Korros., 1969, Bd. 20, H. 2, S. 98–102. doi: 10.1002/maco.19690200204. (In German)
  6. Chaia N., Portebois L., Mathieu S., David N., Vilasi M. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti. J. Nucl. Mater., 2017, vol. 484, pp. 148–156. doi: 10.1016/j.jnucmat.2016.11.027.
  7. Chu W.K., Kraütle H., Mayer J.W., Müller H., Nicolet M.-A. Identification  of  the  dominant  diffusing species in silicide formation. Appl. Phys. Lett., 1974, vol. 25, no. 8, pp. 454–457. doi: 10.1063/1.1655546.
  8. Muroga T., Chen J.M., Chernov V.M., Kurtz R.J., Le Flem M. Present status of vanadium alloys for fusion applications. J. Nucl. Mater., 2014, vol. 455, nos. 1–3, pp. 263–268. doi: 10.1016/j.jnucmat.2014.06.025.
  9. Mathieu S., Chaia N., Le Flem M., Vilasi M. Multi-layered silicides coating for vanadium alloys for generation IV reactors. Surf. Coat. Technol., 2012, vol. 206, no. 22, pp. 4594–4600. doi: 10.1016/j.surfcoat.2012.05.016.
  10. Chaia N., Mathieu St., Cozzika Th., Flem M., Desgranges C., Pasquier S., Courouau J.-L., Lorentz V., Petitjean C., David N., Vilasi M. Protective silicides coatings on vanadium alloys for nuclear applications. Proc. 8th Int. Symp. on High Temperature Corrosion and Protection of Materials. Les Embiez, 2012. Available at: https://www.researchgate.net/publication/248390089_Protective_silicides_coatings_ on_vanadium_alloys_for_nuclear_applications.
  11. Nikolajtschuk P.A. Thermodynamische Einschätzung der chemischen und elektrochemischen Stabilität von Siliziden der Übergangsmetalle der vierten Periode. In: Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Univ. Greifswald, 2019. 641 S. (In German)
  12. Nikolaychuk P.A. Thermodynamic evaluation of electrochemical stability of Me – Si systems (Me = 4th row transition metal). Zh. Sib. Fed. Univ. Ser. Khim., 2015, vol. 8, no. 2, pp. 160–180. doi: 10.17516/1998-2836-2015-8-2-160-180. (In Russian)
  13. Smith J.F. The Si−V (Silicon-Vanadium) system: Addendum. Bull. Alloy Phase Diagrams, 1985, vol. 6, no. 3, pp. 266–271. doi: 10.1007/BF02880413.
  14. Okamoto H. Si-V (Silicon-Vanadium). J. Phase Equilib. Diffus., 2010, vol. 31, no. 4, pp. 409–410. doi: 10.1007/s11669-010-9733-5.
  15. Smith J.F. The Si−V (Silicon-Vanadium) system. Bull. Alloy Phase Diagrams, 1981, vol. 2, no. 1, pp. 42–48. doi: 10.1007/BF02873702.
  16. Termicheskie konstanty veshchestv [Thermal Constants of Substances], 2007. Available at: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html. (In Russian)
  17. Chase M.W. Jr., Davies C.A., Downey J.R.  Jr., Frurip D.J., McDonald R.A., Syverud A.N. JANAF thermochemical tables. Third edition. J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1, pp. 1–1856.
  18. Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I., Bailey S.M., Churney K.L., Nuttall R.L. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data, 1982, vol. 11, suppl. 2, pp. 1–392.
  19. Speight J.G. Lange’s Handbook of Chemistry. New York, McGraw-Hill, 2005, 1623 p.
  20. Schweitzer G.K., Pesterfield L.L. The Aqueous Chemistry of the Elements. Oxford, Oxford Univ. Press, 2010. 447 p.
  21. Evans H.T. Jr., Garrels R.M. Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochim. Cosmochim. Acta, 1958, vol. 15, nos. 1–2, pp. 131–149. doi: 10.1016/0016-7037(58)90015-2.
  22. Kelsall G., Thompson I., Francis P. Redox chemistry of H2S oxidation by the British Gas Stretford process part IV: V-S-H2O thermodynamics and aqueous vanadium(v) reduction in alkaline solutions. J. Appl. Electrochem., 1993, vol. 23, no. 5, pp. 417–426. doi: 10.1007/BF00707617.
  23. Post K., Robins R.G. Thermodynamic diagrams for the vanadium-water system at 298.15 K. Electrochim. Acta, 1976, vol. 21, no. 6, pp. 401–405. doi: 10.1016/0013-4686(76)85115-8.
  24. Sadiq M. Thermodynamic solubility relationships of inorganic vanadium in the marine environment. Mar. Chem., 1988, vol. 23, nos. 1–2, pp. 87–96. doi: 10.1016/0304-4203(88)90024-2.
  25. Nikolaychuk P.A. The revised Pourbaix diagram for silicon. Silicon, 2014, vol. 6, no. 2, pp. 109–116. doi: 10.1007/s12633-013-9172-0.
  26. Dinsdale A.T. SGTE data for pure elements. Calphad, 1991, vol. 15, no. 4, pp. 317–425. doi: 10.1016/0364-5916(91)90030-N.
  27. Redlich O., Kister A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem., 1948, vol. 40, no. 2, pp. 345–348. doi: 10.1021/ie50458a036.
  28. Schwingenschlögl U., Eyert V. The vanadium Magnéli phases VnO2n-1. Ann. Phys., 2004, vol. 13, no. 9, pp. 475–510. doi: 10.1002/andp.200410099.
  29. Magnéli A. Non-stoichiometry and structural disorder in some families of inorganic compounds. Pure Appl. Chem., 1978, vol. 50, nos. 11–12, pp. 1261–1271. doi: 10.1351/pac197850111261.
  30. Spear K.E., Gilles PP.W., Schäfer H. Chemical transport reactions in the vanadium-silicon-oxygen system and the ternary phase diagram. J. Less Common Met., 1968, vol. 14, no. 1, pp. 69–75. doi: 10.1016/0022-5088(68)90204-X.
  31. Tretyakov Yu.D. Termodinamika ferritov [Thermodynamics of Ferrites]. Leningrad, Khimiya, 1967. 305 p. (In Russian)
  32. Tyurin A.G. Termodinamika khimicheskoi i elektrokhimicheskoi ustoichivisti tvyordykh splavov zheleza, khroma i nikelya [Termodynamics of Chemical and Electrochemical Stability of Hard Alloys of Iron, Chrome, and Nickel]. Chelyabinsk: Izd. Chelyab. Gos. Univ., 2012. 241 p (In Russian)
  33. Hubbard K.J., Schlom D.G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res., 1996, vol. 11, no. 11, pp. 2757–2776. doi: 10.1557/JMR.1996.0350.
  34. Lukas H.L., Fries S.G., Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge, Cambridge Univ. Press, 2007. 323 p.
  35. Schmalzried H., Pelton A.D. Zur geometrischen Darstellung von Phasengleichgewichten. Ber. Bunsen-Ges. Phys. Chem., 1973, Bd. 77, H. 2, S. 90–94. doi: 10.1016/0022-5088(68)90204-X.
  36. Pope M.T., Dale B.W. Isopolyvanadates, -niobates, and –tantalates. Q. Rev., Chem. Soc., 1968, vol. 22, no. 4, pp. 527–548. doi: 10.1039/QR9682200527.
  37. Ropp R.C., Carroll B. Precipitation of rare earth vanadates from aqueous solution. J. Inorg. Nucl. Chem., 1977, vol. 39, no. 8, pp. 1303–1307. doi: 10.1016/0022-1902(77)80286-8.
  38. Muzgin V.N., Khamzina L.B., Zolotavin V.L., Bezrukov I.Ya. Analiticheskaya khimiya vanadiya [Analytical Chemistry of Vanadium]. Moscow, Nauka, 1981. 216 p. (In Russian)
  39. Zeng Y., Ma M.-R. Predominance diagram of dissolved species and Pourbaix diagram of V–H2O system at high vanadium concentration. Acta Phys.-Chim. Sin., 2009, vol. 25, no. 5, pp. 953–957. doi: 10.3866/PKU.WHXB20090519. (In Chinese)
  40. Griffiths R., Pryde J.A., Righini-Brand A.  Phase  diagram  and  thermodynamic  data  for  the hydrogen/vanadium system. J. Chem. Soc., Faraday Trans. 1, 1972, vol. 68, pp. 2344–2349. doi: 10.1039/F19726802344.
  41. Kiss L. Kinetics of Electrochemical Metal Dissolution. Budapest, Akad. Kiado, 1988. 272 p.
  42. Thompson W.T., Kaye M.H., Bale C.W., Pelton A.D. Pourbaix diagrams for multielement systems. Uhlig’s Corrosion Handbook. Revie R.W. (Ed.). New York, Wiley, 2011, pp. 103–110. doi: 10.1002/9780470872864.ch8.
  43. Vernik E.D. Jr. Simplified procedure for constructing Pourbaix diagrams. Corrosion, 1967, vol. 23, no. 12, pp. 371–373. doi: 10.5006/0010-9312-23.12.371.

 

The content is available under the license Creative Commons Attribution 4.0 License.