A.A. Aganin , M.A. Ilgamov∗∗ , D.Yu. Toporkov∗∗∗

Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111 Russia

E-mail: aganin@kfti.knc.ru, ∗∗ilgamov@anrb.ru, ∗∗∗top.dmtr@gmail.com

Received November 22, 2018

Full text pdf

DOI: 10.26907/2541-7746.2019.4.485-496

For citation: Aganin A.A., Ilgamov M.A., Toporkov D.Yu. Possibility of increasing the liquid temperature in the problem of supercompression of a bubble by an acoustic action. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 4, pp. 485–496. doi: 10.26907/2541-7746.2019.4.485-496. (In Russian)

Abstract

Expansions and collapses of a vapor bubble at the pressure antinode of a standing acoustic wave in liquid acetone at temperatures 273 K and 293 K were compared. In the first case, the acoustic excitation amplitude and frequency were 15 bar and 19.3 kHz, whereas in the second case they were varied on the condition that the maximum radius of the bubble is equal to its value in the first case. A hydrodynamic model with realistic equations of state, which takes into account the non-equilibrium evaporation and condensation of vapor at the bubble surface, the unsteady thermal conductivity in vapor and liquid, was used. It was found that the bubble vapor compression in the case of 293 K and the acoustic excitation frequency and amplitude being two and three times higher than in the case of 273 K, respectively, is not less than in the case of 273 K.

Keywords: acoustic excitation, bubble collapse, shock wave, strong compression, spherical shape distortion

Acknowledgments. The study was supported by the Russian Science Foundation (project no. 17-11-01135).

References

  1. Moss W.C., Clarke D.B., Young D.A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science, 1997, vol. 276, no. 5317, pp. 1398–1401. doi: 10.1126/science.276.5317.1398.
  2. Bass A., Ruuth S.J., Camara C., Merriman B., Putterman S. Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble. Phys. Rev. Lett., 2008, vol. 101, no. 23, art. 234301, pp. 1–4. doi: 10.1103/PhysRevLett.101.234301.
  3. Taleyarkhan R.P., West C.D., Cho J.S., Lahey R.T., Jr., Nigmatulin R.I., Block R.C. Evidence for nuclear emissions during acoustic cavitation. Science, 2002, vol. 295, no. 5561, pp. 1868–1873. doi: 10.1126/science.1067589.
  4. Nigmatulin R.I., Akhatov I.Sh., Topolnikov A.S., Bolotnova R.Kh., Vakhitova N.K., Lahey R.T., Jr., Taleyarkhan R.P. The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion. Phys. Fluids, 2005, vol. 17, no. 10, art. 107106, pp. 1–31. doi: 10.1063/1.2104556.
  5. Nigmatulin R.I., Lahey R.T. Jr., Taleyarkhan R.P., West C.D., Block R.C. On thermonuclear processes in cavitation bubbles. Phys.-Usp., 2014, vol. 57, no. 9, pp. 877–890. doi: 10.3367/UFNe.0184.201409b.0947.
  6. Ilgamov M.A. Strong expansion-compression of a cavity in liquid under acoustic excitation. Prikl. Mat. Mekh., 2014, vol. 78, no. 3, pp. 425–433. (In Russian)
  7. Nigmatulin R.I., Bolotnova R.Kh. Wide-range equation of state for organic liquids: Acetone as an example. Dokl. Phys., 2007, vol. 52, no. 8, pp. 442–446. doi: 10.1134/S1028335807080095.
  8. Aganin A.A. Dynamics of a small bubble in a compressible fluid. Int. J. Numer. Methods Fluids, 2000, vol. 33, no. 2, pp. 157–174. doi: 10.1002/(SICI)1097-0363(20000530)33:2¡157::AID-FLD6¿3.0.CO;2-A.
  9. Moss W.C., Clarke D.B., White J.W., Young D.A. Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys. Fluids, 1994, vol. 6, no. 9, pp. 2979–2985. doi: 10.1063/1.868124.
  10. Aganin A.A., Nigmatulin R.I., Ilgamov M.A., Akhatov I.Sh. Gas-bubble dynamics in the center of spherical liquid volume. Dokl. Ross. Akad. Nauk, 1999, vol. 369, no. 2, pp. 182–185. (In Russian)
  11. Nigmatulin R.I., Aganin A.A., Toporkov D.Yu., Ilgamov M.A. Evolution of disturbances of the sphericity of a bubble under strong compression. Dokl. Phys., 2016, vol. 61, no. 3, pp. 138–142. doi: 10.1134/S1028335816030083.
  12. Prosperetti A. Viscous effects on perturbed spherical flows. Q. Appl. Math., 1977, vol. 34, no. 4, pp. 339–352.
  13. Lin H., Storey B.D., Szeri A.J. Inertially driven inhomogeneities in violently collapsing bubbles: The validity of the Rayleigh–Plesset equation. J. Fluid Mech., 2002, vol. 452, pp. 145–162. doi: 10.1017/S0022112001006693.
  14. Nigmatulin R.I., Aganin A.A., Il’gamov M.A., Toporkov D.Yu. Evolution of deviations from the spherical shape of a vapor bubble in supercompression. J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 3, pp. 444–461. doi: 10.1134/S0021894414030080.
  15. Plesset M.S., Mitchell T.P. On the stability of the spherical shape of a vapor cavity in a liquid. Q. Appl. Math., 1956, vol. 13, no. 4, pp. 419–430.

 

The content is available under the license Creative Commons Attribution 4.0 License.