R.H. Pshegusov a*, V.A. Chadaeva a**, I.V. Taniya b***, L.M. Abramova c****, A.N. Mustafina c*****

aTembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, Nalchik, 360051 Russia

bRitsa Relict National Park, Gudauta, 384850 Republic of Abkhazia

cBotanical Garden-Institute of the Ufa Scientific Center, Russian Academy of Sciences, Ufa, 450080 Russia

E-mail: *p_rustem@inbox.ru, **balkarochka0787@mail.ru, ***agnaainat@mail.ru, ****abramova.lm@mail.ru, *****alfverta@mail.ru

Received April 23, 2019

Full text PDF

DOI: 10.26907/2542-064X.2019.4.571-589

For citation: Pshegusov R.H., Chadaeva V.A., Taniya I.V., Abramova L.M., Mustafina A.N. Life strategies and the long-term climate-driven dynamics of the endemic Caucasian plant Fritillaria latifolia Willd. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 4, pp. 571–589. doi: 10.26907/2542-064X.2019.4.571-589. (In Russian)

Abstract

The rare endemic plant Fritillaria latifolia Willd. growing in subalpine meadows of the Western and Central Caucasus has the SR life strategy of life. The ecological and phytocenotic patience enables this species to withstand the impact of limiting factors, such as high anthropogenic load and interspecific competition, for a long period of time. F. latifolia rapidly invades free territories by increasing the number of its individuals (an explerent component of the life strategy) in case of moderate grazing and low interspecific competition. The mean air temperature in spring (below –8°C and above 4°C) and the maximum air temperature in February (below –4 °C and above 0 °C) are the major limiting abiotic factors for the species. Therefore, the abundance of F. latifolia is highest in mountainous areas of the Western Caucasus with a warmer climate. In accordance with the predicted trends of climate change by 2050, the geographical range of the species may expand by 4.40 times in the Central and Eastern Caucasus. The area of optimum habitats for the species, where the chance to find it is 80–100%, may increase by 10.51 times. A significant habitat reduction is also predicted for F. latifolia in the Western Caucasus.

Keywords: endemic species, Caucasus, mountain areas, life strategy, MaxEnt, spatial modeling, climate change, forecast

Figure Captions

Fig. 1. Scatterplot of Fritillaria latifolia cenopulations according to the discriminant analysis of plants biometric parameters in the coordinate system of axes of the canonical roots of two discriminant functions (Root 1 and Root 2). I, II, III – groups of cenopopulations subjected to the low, moderate, and high anthropogenic load.

Fig. 2. Age spectra of Fritillaria latifolia cenopopulations (1–16). pl – s – ontogenetic states; Y-axis – the percentage of age groups in cenopopulations.

Fig. 3. Distribution map of suitable habitats of Fritillaria latifolia at the present time (above) and by 2050, according to climate change (below). 0–0.4 – probability of finding the species for unsuitable habitats, 0.5–0.8 and over 0.8 – probability for suitable and optimal habitats, respectively.

Fig. 4. Values of the factors having the greatest contribution to the spatial distribution of F. latifolia. Y-axis – the predicted probability of suitable conditions for the species growth in the logistic output format, X-axis – the value of the variable. The black line represents the minimum probability of finding the species for suitable and optimal habitats (0.5). The graphs show the dependence of the predicted habitat suitability on the selected variable, according to its correlation with other variables.

References

  1. Banag C., Thrippleton T., Alejandro G.J., Reineking B., Liede-Schumann S. Bioclimatic niches of selected endemic Ixora species on the Philippines: Predicting habitat suitability due to climate change. Plant Ecol., 2015, vol. 216, no. 9, pp. 1325–1340. doi: 10.1007/s11258-015-0512-6.
  2. Mazangi A., Ejtehadi H., Mirshamsi O., Ghassemzadeh F., Hosseinianyousefkhani S.S. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech. f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russ. J. Ecol., 2016, vol. 47, no. 4, pp. 349–354. doi: 10.1134/S1067413616040123.
  3. Khanum R. Rarity of endemic medicinal plants and role of herbaria for their conservation against environmental challenges. In: Ghorbanpour M., Varma A. (Eds.) Medicinal Plants and Environmental Challenges. Cham, Springer, 2017, pp. 49–68. doi: 10.1007/978-3-319-68717-9_3.
  4. Dyke F.V. Conservation Biology. Foundations, Concepts, Applications. Dordrecht, Springer, 2008. 459 p. doi: 10.1007/978-1-4020-6891-1_5.
  5. Pauli H., Gottfried M., Dirnböck T., Dullinger S., Grabherr G. Assessing the long-term dynamics of endemic plants at summit habitats. In: Nagy L., Grabherr G., Körner C., Thompson D.B.A. (Eds.) Alpine Biodiversity in Europe. Ecological Studies (Analysis and Synthesis). Vol. 167. Berlin, Heidelberg, Springer, 2003, pp. 195–207. doi: 10.1007/978-3-642-18967-8_9.
  6. Guerrina M., Conti E., Minuto L., Casazza G. Knowing the past to forecast the future: A case study on a relictual, endemic species of the SW Alps, Berardia subacaulis. Reg. Environ. Change, 2016, vol. 16, no. 4, pp. 1035–1045. doi: 10.1007/s10113-015-0816-z.
  7. Grabherr G., Gottfried M., Pauli H. Long-term monitoring of mountain peaks in the Alps. In: Burga C., Kratochwil A. (Eds.) Biomonitoring: General and Applied Aspects on Regional and Global Scales. Tasks for Vegetation Science. Dordrecht, Springer, 2001, vol. 35, pp. 153–177. doi: 10.1007/978-94-015-9686-2_10.
  8. Christmas M.J., Breed M.F., Lowe A.J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet., 2016, vol. 17, no. 2, pp. 305–320. doi: 10.1007/s10592-015-0782-5.
  9. Noël F., Maurice S., Mignot A., Glémin S., Carbonell D., Justy F., Guyot I., Olivieri I., Petit Ch. Interaction of climate, demography and genetics: A ten-year study of Brassica insularis, a narrow endemic Mediterranean species. Conserv. Genet., 2010, vol. 11, no. 2, pp. 509–526. doi: 10.1007/s10592-010-0056-1.
  10. Shapcott A., Hutton I., Baker W.J., Auld T.D. Conservation genetics and ecology of an endemic montane palm on Lord Howe Island and its potential for resilience. Conserv. Genet., 2012, vol. 13, no. 1, pp. 257–270. doi: 10.1007/s10592-011-0282-1.
  11. Maděra P., Habrová H., Šenfeldr M., Kholová I., Lvončík S., Ehrenbergerová L., Roth M., Nadezhdina N., Němec P., Rosenthal J., Pavliš J. Growth dynamics of endemic Dracaena cinnabari Balf. f. of Socotra Island suggest essential elements for a conservation strategy. Biologia, 2018, vol. 4, pp. 1–11. doi: 10.2478/s11756-018-0152-0.
  12. Irfan-Ullah M., Amarnath G., Murthy M.S.R., Peterson A.T. Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling. In: Hawksworth D.L., Bull A.T. (Eds.) Plant Conservation and Biodiversity. Dordrecht, Springer, 2006, pp. 343–351. doi: 10.1007/s10531-006-9110-1.
  13. Rana S.K., Rana H.K., Ghimire S.K., Shrestha K.K., Ranjitkar S. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J. Mt. Sci., 2017, vol. 14, no. 3, pp. 558–570. doi: 10.1007/s11629-015-3822-1.
  14. Ataev Z.V., Bratkov V.V. Reaction of landscapes of the North Caucasus to the current climate change. Yug Ross.: Ekol., Razvit., 2014, no. 1, pp. 141–157. (In Russian)
  15. Shary P.A., Sharaya L.S. Change in NDVI of forest ecosystems in Northern Caucasus as a function of topography and climate. Contemp. Probl. Ecol., 2014, vol. 7, no. 7, pp. 855–863. doi: 10.1134/S1995425514070099.
  16. Akatov V.V., Akatova T.V. Changes in phytocenoses of high-mountain meadows and wastelands of the Lagonaki Highland (Western Caucasus) for the last 15–20 years. Rastit. Ross., 2012, no. 21, pp. 3–12. (In Russian)
  17. Thazaplizheva L.Kh., Chadaeva V.A. Survival strategies of some species of geophytes in the area of the Kabardino-Balkar Republic. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2012, vol. 154, no. 4, pp. 199–205. (In Russian)
  18. Taniya I.V., Abramova L.M. Rare species of higher plants of the Ritsa Relic National Park (Republic of Abkhazia). Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2013, vol. 15, nos. 3–5, pp. 1457–1461. (In Russian)
  19. Ramenskii L.G. On the principles, main concepts and terms in industrial typology of lands. Sovrem. Bot., 1935, no. 4, pp. 25–42. (In Russian)
  20. Grime J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. New York, Wiley, 2001. 417 p.
  21. Shkhagapsoev S.H., Chadaeva V.A. Resistance mechanisms of plant species as exemplified by Allium albidum Fisch. ex Bieb. in the Central Caucasus. Russ. J. Ecol., 2015, vol. 46, no. 2, pp. 136–142. doi: 10.7868/S0367059715010163.
  22. Rabotnov T.A. Fitotsenologiya [Phytocenology]. Moscow, Izd. Mosk. Gos. Univ., 1992. 352 p. (In Russian)
  23. Uranov A.A. The age spectrum of phytocenopopulations as a function of time and energy wave processes. Nauchn. Dokl. Vyssh. Shk. Biol. Nauki, 1975, no. 2, pp. 7–34. (In Russian)
  24. Zhivotovsky L.A. Ontogenetic states, effective density, and classification of plant populations. Russ. J. Ecol., 2001, vol. 32, no. 1, pp. 1–5. doi: 10.1023/A:1009536128912.
  25. Zhukova L.A. Populyatsionnaya zhizn’ lugovykh rastenii [Population Life of Meadow Plants]. Yoshkar-Ola, RIIK “Lanar”, 1995. 224 p. (In Russian)
  26. Ishbirdin A.R., Ishmuratova M.M. Adaptive morphogenesis and ecological-cenotical strategies for the survival of herbaceous plants. Sb. tr. VII Vseros. populyatsionnogo seminara “Metody populyatsionnoy biologii” [Proc. All-Russ. Popul. Semin. “Methods of Population Biology”]. Syktyvkar, Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2004, pp. 113–120. (In Russian)
  27. Levina R.E. Reproduktivnaya biologiya semennykh rastenii [Reproductive Biology of Seed Plants]. Moscow, Nauka, 1981. 96 p. (In Russian)
  28. Baldwin R.A. Use of maximum entropy modeling in wildlife research. Entropy, 2009, vol. 11, no. 4, pp. 854–866. doi: 10.3390/e11040854.
  29. Elith J., Graham C.H., Anderson R.P., Dudı’k M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M., Peterson A.T., Phillips S.J. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, vol. 29, no. 2, pp. 129–151. doi: 10.1111/j.2006.0906-7590.04596.x.
  30. Sokolova E.I., Berezhnoi M.V., Butylkina N.Yu. New locations of species of the genus Tulipa L. and Fritillaria L. (Liliaceae) in the Lugansk region. Vestn. Voronezh. Gos. Univ. Ser.: Khim. Biol. Farm., 2016, no. 4, pp. 89–98. (In Russian)
  31. Leonova TV, Barsukova I.N., Ankipovich E.S. Some aspects of the study of population biology of Fritillaria sonnikovae Schaulo et A. Erst (Liliaceae) in the territory of the Western Sayan. Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2016, no. 2, pp. 3–7. (In Russian)
  32. Shapovalov A.A. The age spectrum of coenopopulations of Russian fritillaria (Fritillaria ruthenica Wikstr.) in the Balashov district in 2016. Sovr. Nauka: Aktual. Probl. Teor. Prakt.. Ser.: Estestv. Tekh. Nauki, 2017, no. 11, pp. 31–35. (In Russian)
  33. Shimizu T., Hatanaka Y., Zentoh H., Takeshi Y., Eiichiro K., Yasuyuki W., Tatemi Sh. The role of sexual and clonal reproduction in maintaining population in Fritillaria camtschatcensis (L.) Ker-Gawl. (Liliaceae). Ecol. Res., 2002, vol. 13, no. 1, pp. 27–39. doi: 10.1046/j.1440-1703.1998.00245.x.
  34. Muldashev A.A., Maslova N.V., Galeeva A.Kh., Elizar’eva O.A., Abramova L.M. Characteristics of populations of the checkered fritillary Fritillaria meleagroides (Liliaceae) in the Ural region of the Republic of Bashkortostan. Izv. Orenb. Gos. Agrar. Univ., 2010, no. 3, pp. 205–207. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.